2023年高考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数且的图象恒过定点,则函数图象以点为对称中心的充要条件是( )
A. B.
C. D.
2.射线测厚技术原理公式为,其中分别为射线穿过被测物前后的强度,是自然对数的底数,为被测物厚度,为被测物的密度,是被测物对射线的吸收系数.工业上通常用镅241()低能射线测量钢板的厚度.若这种射线对钢板的半价层厚度为0.8,钢的密度为7.6,则这种射线的吸收系数为( )
(注:半价层厚度是指将已知射线强度减弱为一半的某种物质厚度,,结果精确到0.001)
A.0.110 B.0.112 C. D.
3.已知α,β表示两个不同的平面,l为α内的一条直线,则“α∥β是“l∥β”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
4.过双曲线的右焦点F作双曲线C的一条弦AB,且,若以AB为直径的圆经过双曲线C的左顶点,则双曲线C的离心率为( )
A. B. C.2 D.
5.已知数列 中, ,若对于任意的,不等式恒成立,则实数的取值范围为( )
A. B.
C. D.
6.已知函数,若时,恒成立,则实数的值为( )
A. B. C. D.
7.如图,圆锥底面半径为,体积为,、是底面圆的两条互相垂直的直径,是母线的中点,已知过与的平面与圆锥侧面的交线是以为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点的距离等于( )
A. B.1 C. D.
8.已知集合,则为( )
A.[0,2) B.(2,3] C.[2,3] D.(0,2]
9.已知函数,若,则下列不等关系正确的是( )
A. B.
C. D.
10.执行如图所示的程序框图,则输出的的值为( )
A. B.
C. D.
11.已知函数,若,则的取值范围是( )
A. B. C. D.
12.已知复数,则( )
A. B. C. D.2
二、填空题:本题共4小题,每小题5分,共20分。
13.展开式中的系数为_______________.
14.将函数的图象向右平移个单位长度后得到函数的图象,则函数的最大值为______.
15.若为假,则实数的取值范围为__________.
16.执行如图所示的程序框图,则输出的结果是______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)设函数,,其中,为正实数.
(1)若的图象总在函数的图象的下方,求实数的取值范围;
(2)设,证明:对任意,都有.
18.(12分)分别为的内角的对边.已知.
(1)若,求;
(2)已知,当的面积取得最大值时,求的周长.
19.(12分)已知函数.
(1)求不等式的解集;
(2)若关于的不等式在上恒成立,求实数的取值范围.
20.(12分)已知数列为公差为d的等差数列,,,且,,依次成等比数列,.
(1)求数列的前n项和;
(2)若,求数列的前n项和为.
21.(12分)设,,,.
(1)若的最小值为4,求的值;
(2)若,证明:或.
22.(10分)设,函数.
(1)当时,求在内的极值;
(2)设函数,当有两个极值点时,总有,求实数的值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【解析】
由题可得出的坐标为,再利用点对称的性质,即可求出和.
【详解】
根据题意,,所以点的坐标为,
又 ,
所以.
故选:A.
【点睛】
本题考查指数函数过定点问题和函数对称性的应用,属于基础题.
2、C
【解析】
根据题意知,,代入公式,求出即可.
【详解】
由题意可得,因为,
所以,即.
所以这种射线的吸收系数为.
故选:C
【点睛】
本题主要考查知识的迁移能力,把数学知识与物理知识相融合;重点考查指数型函数,利用指数的相关性质来研究指数型函数的性质,以及解指数型方程;属于中档题.
3、A
【解析】
试题分析:利用面面平行和线面平行的定义和性质,结合充分条件和必要条件的定义进行判断.
解:根据题意,由于α,β表示两个不同的平面,l为α内的一条直线,由于“α∥β,
则根据面面平行的性质定理可知,则必然α中任何一条直线平行于另一个平面,条件可以推出结论,反之不成立,
∴“α∥β是“l∥β”的充分不必要条件.
故选A.
考点:必要条件、充分条件与充要条件的判断;平面与平面平行的判定.
4、C
【解析】
由得F是弦AB的中点.进而得AB垂直于x轴,得,再结合关系求解即可
【详解】
因为,所以F是弦AB的中点.且AB垂直于x轴.因为以AB为直径的圆经过双曲线C的左顶点,所以,即,则,故.
故选:C
【点睛】
本题是对双曲线的渐近线以及离心率的综合考查,是考查基本知识,属于基础题.
5、B
【解析】
先根据题意,对原式进行化简可得,然后利用累加法求得,然后不等式恒成立转化为恒成立,再利用函数性质解不等式即可得出答案.
【详解】
由题,
即
由累加法可得:
即
对于任意的,不等式恒成立
即
令
可得且
即
可得或
故选B
【点睛】
本题主要考查了数列的通项的求法以及函数的性质的运用,属于综合性较强的题目,解题的关键是能够由递推数列求出通项公式和后面的转化函数,属于难题.
6、D
【解析】
通过分析函数与的图象,得到两函数必须有相同的零点,解方程组即得解.
【详解】
如图所示,函数与的图象,
因为时,恒成立,
于是两函数必须有相同的零点,
所以
,
解得.
故选:D
【点睛】
本题主要考查函数的图象的综合应用和函数的零点问题,考查不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.
7、D
【解析】
建立平面直角坐标系,求得抛物线的轨迹方程,解直角三角形求得抛物线的焦点到圆锥顶点的距离.
【详解】
将抛物线放入坐标系,如图所示,
∵,,,
∴,设抛物线,代入点,
可得
∴焦点为,
即焦点为中点,设焦点为,
,,∴.
故选:D
【点睛】
本小题考查圆锥曲线的概念,抛物线的性质,两点间的距离等基础知识;考查运算求解能力,空间想象能力,推理论证能力,应用意识.
8、B
【解析】
先求出,得到,再结合集合交集的运算,即可求解.
【详解】
由题意,集合,
所以,则,
所以.
故选:B.
【点睛】
本题主要考查了集合的混合运算,其中解答中熟记集合的交集、补集的定义及运算是解答的关键,着重考查了计算能力,属于基础题.
9、B
【解析】
利用函数的单调性得到的大小关系,再利用不等式的性质,即可得答案.
【详解】
∵在R上单调递增,且,∴.
∵的符号无法判断,故与,与的大小不确定,
对A,当时,,故A错误;
对C,当时,,故C错误;
对D,当时,,故D错误;
对B,对,则,故B正确.
故选:B.
【点睛】
本题考查分段函数的单调性、不等式性质的运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,属于基础题.
10、B
【解析】
列出循环的每一步,进而可求得输出的值.
【详解】
根据程序框图,执行循环前:,,,
执行第一次循环时:,,所以:不成立.
继续进行循环,…,
当,时,成立,,
由于不成立,执行下一次循环,
,,成立,,成立,输出的的值为.
故选:B.
【点睛】
本题考查的知识要点:程序框图的循环结构和条件结构的应用,主要考查学生的运算能力和转换能力,属于基础题型.
11、B
【解析】
对分类讨论,代入解析式求出,解不等式,即可求解.
【详解】
函数,由
得或
解得.
故选:B.
【点睛】
本题考查利用分段函数性质解不等式,属于基础题.
12、C
【解析】
根据复数模的性质即可求解.
【详解】
,
,
故选:C
【点睛】
本题主要考查了复数模的性质,属于容易题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【解析】
把按照二项式定理展开,可得的展开式中的系数.
【详解】
解:,
故它的展开式中的系数为,
故答案为:.
【点睛】
本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.
14、
【解析】
由三角函数图象相位变换后表达函数解析式,再利用三角恒等变换与辅助角公式整理的表达式,进而由三角函数值域求得最大值.
【详解】
将函数的图象向右平移个单位长度后得到函数的图象,
则
所以,当函数最大,最大值为
故答案为:
【点睛】
本题考查表示三角函数图象平移后图象的解析式,还考查了利用三角恒等变换化简函数式并求最值,属于简单题.
15、
【解析】
由为假,可知为真,所以对任意实数恒成立,求出的最小值,令即可.
【详解】
因为为假,则其否定为真,
即为真,所以对任意实数恒成立,所以.
又,当且仅当,即时,等号成立,所以.
故答案为:.
【点睛】
本题考查全称命题与特称命题间的关系的应用,利用参变分离是解决本题的关键,属于中档题.
16、1
【解析】
该程序的功能为利用循环结构计算并输出变量的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.
【详解】
模拟程序的运行,可得:,,
不满足条件,执行循环体,,,
不满足条件,执行循环体,,,
不满足条件,执行循环体,,,
不满足条件,执行循环体,,,
此时满足条件,退出循环,输出的值为1.
故答案为:1.
【点睛】
本题考查程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1) (2)证明见解析
【解析】
(1)据题意可得在区间上恒成立,利用导数讨论函数的单调性,从而求出满足不等式的的取值范围;(2)不等式整理为,由(1)可知当时,,利用导数判断函数的单调性从而证明在区间上成立,从而证明对任意,都有.
【详解】
(1)解:因为函数的图象恒在的图象的下方,
所以在区间上恒成立.
设,其中,
所以,其中,.
①当,即时,,
所以函数在上单调递增,,
故成立,满足题意.
②当,即时,设,
则图象的对称轴,,,
所以在上存在唯一实根,设为,则,,,
所以在上单调递减,此时,不合题意.
综上可得,实数的取值范围是.
(2)证明:由题意得,
因为当时,,,
所以.
令,则,
所以在上单调递增,,即,
所以,从而.
由(1)知当时,在上恒成立,整理得.
令,则要证,只需证.
因为,所以在上单调递增,
所以,即在上恒成立.
综上可得,对任意,都有成立.
【点睛】
本题考查导数在研究函数中的作用,利用导数判断函数单调性与求函数最值,利用导数证明不等式,属于难题.
18、(1)(2)
【解析】
(1)根据正弦定理,将,化角为边,即可求出,再利用正弦定理即可求出;
(2)根据,选择,所以当的面积取得最大值时,最大,
结合(1)中条件,即可求出最大时,对应的的值,再根据余弦定理求出边,进而得到的周长.
【详解】
(1)由,得,
即.
因为,所以.
由,得.
(2)因为,
所以,当且仅当时,等号成立.
因为的面积.
所以当时,的面积取得最大值,
此时,则,
所以的周长为.
【点睛】
本题主要考查利用正弦定理和余弦定理解三角形,涉及到基本不等式的应用,意在考查学生的转化能力和数学运算能力.
19、(1)或; (2).
【解析】
(1)利用绝对值的几何意义,将不等式,转化为不等式或或求解.
(2)根据-2在R上恒成立,由绝对值三角不等式求得的最小值即可.
【详解】
(1)原不等式等价于
或或,
解得:或,
∴不等式的解集为或.
(2)因为-2在R上恒成立,
而,
所以,解得,
所以实数的取值范围是.
【点睛】
本题主要考查绝对值不等式的解法和不等式恒成立问题,还考查了运算求解的能力,属于中档题.
20、(1)(2)
【解析】
(1)利用等差数列的通项公式以及等比中项求出公差,从而求出,再利用等比数列的前项和公式即可求解.
(2)由(1)求出,再利用裂项求和法即可求解.
【详解】
(1),且,,依次成等比数列,,
即:,,,
,,
;
(2),
.
【点睛】
本题考查了等差数列、等比数列的通项公式、等比数列的前项和公式、裂项求和法,需熟记公式,属于基础题.
21、(1)2;(2)见解析
【解析】
(1)将化简为,再利用基本不等式即可求出最小值为4,便可得出的值;
(2)根据,即,得出,利用基本不等式求出最值,便可得出的取值范围.
【详解】
解:(1)由题可知,,,,
,
∴.
(2)∵,
∴,
∴,
∴,即:或.
【点睛】
本题考查基本不等式的应用,利用基本不等式和放缩法求最值,考查化简计算能力.
22、(1)极大值是,无极小值;(2)
【解析】
(1)当时,可求得,令,利用导数可判断的单调性并得其零点,从而可得原函数的极值点及极大值;
(2)表示出,并求得,由题意,得方程有两个不同的实根,,从而可得△及,由,得.则可化为对任意的恒成立,按照、、三种情况分类讨论,分离参数后转化为求函数的最值可解决;
【详解】
(1)当时,.
令,则,显然在上单调递减,
又因为,故时,总有,所以在上单调递减.
由于,所以当时,;当时,.
当变化时,的变化情况如下表:
+ -
增 极大 减
所以在上的极大值是,无极小值.
(2)由于,则.由题意,方程有两个不等实根,则,解得,且,又,所以.
由,,可得
又.将其代入上式得:.
整理得,即
当时,不等式恒成立,即.
当时,恒成立,即,令,易证是上的减函数.因此,当时,,故.
当时,恒成立,即,
因此,当时,所以.
综上所述,.
【点睛】
本题考查利用导数求函数的最值、研究函数的极值等知识,考查分类讨论思想、转化思想,考查学生综合运用知识分析问题解决问题的能力,该题综合性强,难度大,对能力要求较高.