安徽省2020-2022(三年)数学中考题分题型汇编:选择题
1.(2022·安徽·统考中考真题)下列为负数的是( )
A. B. C.0 D.
2.(2022·安徽·统考中考真题)据统计,2021年我省出版期刊杂志总印数3400万册,其中3400万用科学记数法表示为( )
A. B. C. D.
3.(2022·安徽·统考中考真题)下列各式中,计算结果等于的是( )
A. B. C. D.
4.(2021·安徽·统考中考真题)的绝对值是( )
A. B. C. D.
5.(2021·安徽·统考中考真题)计算的结果是( )
A. B. C. D.
6.(2021·安徽·统考中考真题)《2020年国民经济和社会发展统计公报》显示,2020年我国共资助8990万人参加基本医疗保险.其中8990万用科学记数法表示为( )
A.89.9×106 B.8.99×107 C.8.99×108 D.0.899×109
7.(2020·安徽·统考中考真题)安徽省计划到2022年建成亩高标准农田,其中用科学记数法表示为( )
A.0.547 B. C. D.
8.(2020·安徽·统考中考真题)下列各数中比小的数是( )
A. B. C. D.
9.(2020·安徽·统考中考真题)计算的结果是( )
A. B. C. D.
10.(2021·安徽·统考中考真题)设a,b,c为互不相等的实数,且,则下列结论正确的是( )
A. B. C. D.
11.(2020·安徽·统考中考真题)下列方程中,有两个相等实数根的是( )
A. B.
C. D.
12.(2022·安徽·统考中考真题)甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算.走得最快的是( )
A.甲 B.乙 C.丙 D.丁
13.(2022·安徽·统考中考真题)在同一平面直角坐标系中,一次函数与的图像可能是( )
A. B.
C. D.
14.(2021·安徽·统考中考真题)某品牌鞋子的长度ycm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16cm,44码鞋子的长度为27cm,则38码鞋子的长度为( )
A.23cm B.24cm C.25cm D.26cm
15.(2020·安徽·统考中考真题)如图和都是边长为的等边三角形,它们的边在同一条直线上,点,重合,现将沿着直线向右移动,直至点与重合时停止移动.在此过程中,设点移动的距离为,两个三角形重叠部分的面积为,则随变化的函数图像大致为( )
A. B.
C. D.
16.(2020·安徽·统考中考真题)已知一次函数的图象经过点,且随的增大而减小,则点的坐标可以是( )
A. B. C. D.
17.(2022·安徽·统考中考真题)已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△PAB,△PBC,△PCA的面积分别记为,,,.若,则线段OP长的最小值是( )
A. B. C. D.
18.(2022·安徽·统考中考真题)两个矩形的位置如图所示,若,则( )
A. B. C. D.
19.(2022·安徽·统考中考真题)已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若PA=4,PB=6,则OP=( )
A. B.4 C. D.5
20.(2021·安徽·统考中考真题)在中,,分别过点B,C作平分线的垂线,垂足分别为点D,E,BC的中点是M,连接CD,MD,ME.则下列结论错误的是( )
A. B. C. D.
21.(2021·安徽·统考中考真题)如图,在菱形ABCD中,,,过菱形ABCD的对称中心O分别作边AB,BC的垂线,交各边于点E,F,G,H,则四边形EFGH的周长为( )
A. B. C. D.
22.(2021·安徽·统考中考真题)两个直角三角板如图摆放,其中,,,AB与DF交于点M.若,则的大小为( )
A. B. C. D.
23.(2020·安徽·统考中考真题)如图,中, ,点在上,.若,则的长度为( )
A. B. C. D.
24.(2020·安徽·统考中考真题)已知点在上.则下列命题为真命题的是( )
A.若半径平分弦.则四边形是平行四边形
B.若四边形是平行四边形.则
C.若.则弦平分半径
D.若弦平分半径.则半径平分弦
25.(2022·安徽·统考中考真题)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是( )
A. B.
C. D.
26.(2021·安徽·统考中考真题)几何体的三视图如图所示,这个几何体是( )
A. B. C. D.
27.(2020·安徽·统考中考真题)下列几何体中,其主视图为三角形的是( )
A. B. C. D.
28.(2022·安徽·统考中考真题)随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成.现对由三个小正方形组成的“”进行涂色,每个小正方形随机涂成黑色或白色,恰好是两个黑色小正方形和一个白色小正方形的概率为( )
A. B. C. D.
29.(2021·安徽·统考中考真题)如图在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以组成一个矩形,从这些矩形中任选一个,则所选矩形含点A的概率是( )
A. B. C. D.
30.(2020·安徽·统考中考真题)冉冉的妈妈在网上销售装饰品.最近一周, 每天销售某种装饰品的个数为:.关于这组数据,冉冉得出如下结果,其中错误的是( )
A.众数是 B.平均数是 C.方差是 D.中位数是
参考答案:
1.D
【分析】根据正负数的意义分析即可;
【详解】解:A、=2是正数,故该选项不符合题意;
B、是正数,故该选项不符合题意;
C、0不是负数,故该选项不符合题意;
D、-5<0是负数,故该选项符合题意.
故选D.
【点睛】本题考查正负数的概念和意义,熟练掌握绝对值、算术平方根和正负数的意义是解决本题的关键.
2.C
【分析】将万写成,保留1位整数,写成的形式即可,n为正整数.
【详解】解:万,保留1位整数为,小数点向左移动7位,
因此,
故选:C.
【点睛】本题考查科学记数法的表示方法,熟练掌握中a的取值范围和n的取值方法是解题的关键.
3.B
【分析】利用整式加减运算和幂的运算对每个选项计算即可.
【详解】A.,不是同类项,不能合并在一起,故选项A不合题意;
B.,符合题意;
C.,不是同类项,不能合并在一起,故选项C不合题意;
D.,不符合题意,
故选B
【点睛】本题考查了整式的运算,熟练掌握整式的运算性质是解题的关键.
4.A
【分析】利用绝对值的定义直接得出结果即可
【详解】解:的绝对值是:9
故选:A
【点睛】本题考查绝对值的定义,正确理解定义是关键,熟记负数的绝对值是它的相反数是重点
5.D
【分析】利用同底数幂的乘法法则计算即可
【详解】解:
故选:D
【点睛】本题考查同底数幂的乘法法则,正确使用同底数幂相乘,底数不变,指数相加是关键
6.B
【分析】将8990万还原为89900000后,直接利用科学记数法的定义即可求解.
【详解】解:8990万=89900000=,
故选B.
【点睛】本题考查了科学记数法的定义及其应用,解决本题的关键是牢记其概念和公式,本题易错点是含有单位“万”,学生在转化时容易出现错误.
7.D
【分析】根据科学记数法的表示方法对数值进行表示即可.
【详解】解:54700000=5.47×107,
故选:D.
【点睛】本题考查了科学记数法,掌握科学记数法的表示方法是解题关键.
8.A
【分析】先根据正数都大于0,负数都小于0,可排除C、D,再根据两个负数,绝对值大的反而小,可得比-2小的数是-3.
【详解】∵|-3|=3,|-1|=1,
又0<1<2<3,
∴-3<-2,
所以,所给出的四个数中比-2小的数是-3,
故选:A
【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.
9.C
【分析】先处理符号,化为同底数幂的除法,再计算即可.
【详解】解:
故选C.
【点睛】本题考查的是乘方符号的处理,考查同底数幂的除法运算,掌握以上知识是解题的关键.
10.D
【分析】举反例可判断A和B,将式子整理可判断C和D.
【详解】解:A.当,,时,,故A错误;
B.当,,时,,故B错误;
C.整理可得,故C错误;
D.整理可得,故D正确;
故选:D.
【点睛】本题考查等式的性质,掌握等式的性质是解题的关键.
11.A
【分析】根据根的判别式逐一判断即可.
【详解】A.变形为,此时△=4-4=0,此方程有两个相等的实数根,故选项A正确;
B.中△=0-4=-4<0,此时方程无实数根,故选项B错误;
C.整理为,此时△=4+12=16>0,此方程有两个不相等的实数根,故此选项错误;
D.中,△=4>0,此方程有两个不相等的实数根,故选项D错误.
故选:A.
【点睛】本题主要考查根的判别式,熟练掌握根的情况与判别式间的关系是解题的关键.
12.A
【分析】根据图象,先比较甲、乙的速度;然后再比较丙、丁的速度,进而在比较甲、丁的速度即可.
【详解】乙在所用时间为30分钟时,甲走的路程大于乙走的路程,故甲的速度较快;
丙在所用时间为50分钟时,丁走的路程大于丙走的路程,故丁的速度较快;
又因为甲、丁在路程相同的情况下,甲用的时间较少,故甲的速度最快,
故选A
【点睛】本题考查了从图象中获取信息的能力,正确的识图是解题的关键.
13.D
【分析】分为和两种情况,利用一次函数图像的性质进行判断即可.
【详解】解:当时,两个函数的函数值:,即两个图像都过点,故选项A、C不符合题意;
当时,,一次函数经过一、二、三象限,一次函数经过一、二、三象限,都与轴正半轴有交点,故选项B不符合题意;
当时,,一次函数经过一、二、四象限,与轴正半轴有交点,一次函数经过一、三、四象限,与轴负半轴有交点,故选项D符合题意.
故选:D.
【点睛】本题主要考查了一次函数的图像性质.理解和掌握它的性质是解题的关键.
一次函数的图像有四种情况:
①当,时,函数的图像经过第一、二、三象限;
②当,时,函数的图像经过第一、三、四象限;
③当,时,函数的图像经过第一、二、四象限;
④当,时,函数的图像经过第二、三、四象限.
14.B
【分析】设,分别将和代入求出一次函数解析式,把代入即可求解.
【详解】解:设,分别将和代入可得:
,
解得 ,
∴,
当时,,
故选:B.
【点睛】本题考查一次函数的应用,掌握用待定系数法求解析式是解题的关键.
15.A
【分析】根据图象可得出重叠部分三角形的边长为x,根据特殊角三角函数可得高为,由此得出面积y是x的二次函数,直到重合面积固定,再往右移动重叠部分的边长变为(4-x),同时可得
【详解】C点移动到F点,重叠部分三角形的边长为x,由于是等边三角形,则高为,面积为y=x··=,
B点移动到F点,重叠部分三角形的边长为(4-x),高为,面积为
y=(4-x)··=,
两个三角形重合时面积正好为.
由二次函数图象的性质可判断答案为A,
故选A.
【点睛】本题考查三角形运动面积和二次函数图像性质,关键在于通过三角形面积公式结合二次函数图形得出结论.
16.B
【分析】先根据一次函数的增减性判断出k的符号,再将各项坐标代入解析式进行逐一判断即可.
【详解】∵一次函数的函数值随的增大而减小,
∴k﹤0,
A.当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;
B.当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;
C.当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;
D.当x=3,y=4时,3k+3=4,解得k=﹥0,此选项不符合题意,
故选:B.
【点睛】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键.
17.B
【分析】根据,可得,根据等边三角形的性质可求得△ABC中AB边上的高和△PAB中AB边上的高的值,当P在CO的延长线时,OP取得最小值,OP=CP-OC,过O作OE⊥BC,求得OC=,则可求解.
【详解】解:如图,
,,
∴
=
=
=
==,
∴,
设△ABC中AB边上的高为,△PAB中AB边上的高为,
则,
,
∴,
∴,
∵△ABC是等边三角形,
∴,
,
∴点P在平行于AB,且到AB的距离等于的线段上,
∴当点P在CO的延长线上时,OP取得最小值,
过O作OE⊥BC于E,
∴,
∵O是等边△ABC的中心,OE⊥BC
∴∠OCE=30°,CE=
∴OC=2OE
∵,
∴,
解得OE=,
∴OC=,
∴OP=CP-OC=.
故选B.
【点睛】本题考查了等边三角形的性质,勾股定理,三角形的面积等知识,弄清题意,找到P点的位置是解题的关键.
18.C
【分析】用三角形外角性质得到∠3=∠1-90°=α-90°,用余角的定义得到∠2=90°-∠3=180°-α.
【详解】解:如图,∠3=∠1-90°=α-90°,
∠2=90°-∠3=180°-α.
故选:C.
【点睛】 本题主要考查了矩形,三角形外角,余角,解决问题的关键是熟练掌握矩形的角的性质,三角形的外角性质,互为余角的定义.
19.D
【分析】连接,过点作于点,如图所示,先利用垂径定理求得,然后在中求得,再在中,利用勾股定理即可求解.
【详解】解:连接,过点作于点,如图所示,
则,,
∵PA=4,PB=6,
∴,
∴,
∴,
在中,,
在中,,
故选:D
【点睛】本题考查了垂径定理及勾股定理的运用,构造直角三角形是解题的关键.
20.A
【分析】设AD、BC交于点H,作于点F,连接EF.延长AC与BD并交于点G.由题意易证,从而证明ME为中位线,即,故判断B正确;又易证,从而证明D为BG中点.即利用直角三角形斜边中线等于斜边一半即可求出,故判断C正确;由、和可证明.再由、和可推出 ,即推出,即,故判断D正确;假设,可推出,即可推出.由于无法确定的大小,故不一定成立,故可判断A错误.
【详解】如图,设AD、BC交于点H,作于点F,连接EF.延长AC与BD并交于点G.
∵AD是的平分线,,,
∴HC=HF,
∴AF=AC.
∴在和中,,
∴,
∴,∠AEC=∠AEF=90°,
∴C、E、F三点共线,
∴点E为CF中点.
∵M为BC中点,
∴ME为中位线,
∴,故B正确,不符合题意;
∵在和中,,
∴,
∴,即D为BG中点.
∵在中,,
∴,
∴,故C正确,不符合题意;
∵,,,
∴.
∵,,
∴,
∴.
∵AD是的平分线,
∴.
∵,
∴,
∴,
∴,故D正确,不符合题意;
∵假设,
∴,
∴在中,.
∵无法确定的大小,故原假设不一定成立,故A错误,符合题意.
故选A.
【点睛】本题考查角平分线的性质,三角形全等的判定和性质,直角三角形的性质,三角形中位线的判定和性质以及含角的直角三角形的性质等知识,较难.正确的作出辅助线是解答本题的关键.
21.A
【分析】依次求出OE=OF=OG=OH,利用勾股定理得出EF和OE的长,即可求出该四边形的周长.
【详解】∵HF⊥BC,EG⊥AB,
∴∠BEO=∠BFO=90°,
∵∠A=120°,
∴∠B=60°,
∴∠EOF=120°,∠EOH=60°,
由菱形的对边平行,得HF⊥AD,EG⊥CD,
因为O点是菱形ABCD的对称中心,
∴O点到各边的距离相等,即OE=OF=OG=OH,
∴∠OEF=∠OFE=30°,∠OEH=∠OHE=60°,
∴∠HEF=∠EFG=∠FGH=∠EHG=90°,
所以四边形EFGH是矩形;
设OE=OF=OG=OH=x,
∴EG=HF=2x,,
如图,连接AC,则AC经过点O,
可得三角形ABC是等边三角形,
∴∠BAC=60°,AC=AB=2,
∴OA=1,∠AOE=30°,
∴AE=,
∴x=OE=
∴四边形EFGH的周长为EF+FG+GH+HE=,
故选A.
【点睛】本题考查了菱形的性质、矩形的判定与性质、等边三角形的判定与性质、勾股定理、直角三角形的性质等内容,要求学生在理解相关概念的基础上学会应用,能分析并综合运用相关条件完成线段关系的转换,考查了学生的综合分析与应用的能力.
22.C
【分析】根据,可得再根据三角形内角和即可得出答案.
【详解】由图可得
∵,
∴
∴
故选:C.
【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键.
23.C
【分析】先根据,求出AB=5,再根据勾股定理求出BC=3,然后根据,即可得cos∠DBC=cosA=,即可求出BD.
【详解】∵∠C=90°,
∴,
∵,
∴AB=5,
根据勾股定理可得BC==3,
∵,
∴cos∠DBC=cosA=,
∴cos∠DBC==,即=
∴BD=,
故选:C.
【点睛】本题考查了解直角三角形和勾股定理,求出BC的长是解题关键.
24.B
【分析】根据圆的有关性质、垂径定理及其推论、特殊平行四边形的判定与性质依次对各项判断即可.
【详解】A.∵半径平分弦,
∴OB⊥AC,AB=BC,不能判断四边形OABC是平行四边形,
假命题;
B.∵四边形是平行四边形,且OA=OC,
∴四边形是菱形,
∴OA=AB=OB,OA∥BC,
∴△OAB是等边三角形,
∴∠OAB=60 ,
∴∠ABC=120 ,
真命题;
C.∵,
∴∠AOC=120 ,不能判断出弦平分半径,
假命题;
D.只有当弦垂直平分半径时,半径平分弦,所以是
假命题,
故选:B.
【点睛】本题主要考查命题与证明,涉及垂径定理及其推论、菱形的判定与性质、等边三角形的判定与性质等知识,解答的关键是会利用所学的知识进行推理证明命题的真假.
25.A
【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.
【详解】解:该几何体的俯视图为:
,
故选:A
【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.
26.C
【分析】根据三视图,该几何体的主视图可确定该几何体的形状,据此求解即可.
【详解】解:根据A,B,C,D三个选项的物体的主视图可知,与题图有吻合的只有C选项,
故选:C.
【点睛】本题考查了由三视图判断几何体的知识,熟练掌握三视图并能灵活运用,是解题的关键.
27.D
【详解】试题分析:A.圆柱的主视图为矩形,∴A不符合题意;
B.正方体的主视图为正方形,∴B不符合题意;
C.球体的主视图为圆形,∴C不符合题意;
D.圆锥的主视图为三角形,∴D符合题意.
故选D.
考点:简单几何体的三视图.
28.B
【分析】列出所有可能的情况,找出符合题意的情况,利用概率公式即可求解.
【详解】解:对每个小正方形随机涂成黑色或白色的情况,如图所示,
共有8种情况,其中恰好是两个黑色小正方形和一个白色小正方形情况有3种,
∴恰好是两个黑色小正方形和一个白色小正方形的概率为,
故选:B
【点睛】本题考查了用列举法求概率,能一个不漏的列举出所有可能的情况是解题的关键.
29.D
【分析】根据题意两条横线和两条竖线都可以组成矩形个数,再得出含点A矩形个数,进而利用概率公式求出即可.
【详解】解:两条横线和两条竖线都可以组成一个矩形,
则如图的三条横线和三条竖线可以组成9个矩形,其中含点A矩形4个,
∴所选矩形含点A的概率是
故选:D
【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.
30.D
【分析】分别根据众数、平均数、方差、中位数的定义判断即可.
【详解】将这组数据从小到大的顺序排列:10,11,11,11,13,13,15,
A.这组数据的众数为11,此选项正确,不符合题意;
B.这组数据的平均数为(10+11+11+11+13+13+15)÷7=12,此选项正确,不符合题意;
C.这组数据的方差为=,此选项正确,不符合题意;
D.这组数据的中位数为11,此选项错误,符合题意,
故选:D.
【点睛】本题考查了众数、平均数、方差、中位数,熟练掌握他们的意义和计算方法是解答的关键.
转载请注明出处卷子答案网-一个不只有答案的网站 » 安徽省2020-2022(三年)数学中考题分题型汇编:选择题(含解析)