试卷答案
寻你做寻,想你所想

2021、2022年湖南省各市州中考数学真题压轴专辑 (含解析)


2021、2022年湖南省各市州中考数学真题压轴专辑
长沙
1.(2021 长沙)如图,点O为以AB为直径的半圆的圆心,点M,N在直径AB上,点P,Q在上,四边形MNPQ为正方形,点C在上运动(点C与点P,Q不重合),连接BC并延长交MQ的延长线于点D,连接AC交MQ于点E,连接OQ.
(1)求sin∠AOQ的值;
(2)求的值;
(3)令ME=x,QD=y,直径AB=2R(R>0,R是常数),求y关于x的函数解析式,并指明自变量x的取值范围.
2.(2021 长沙)我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y轴对称,则把该函数称之为“T函数”,其图象上关于y轴对称的不同两点叫做一对“T点”.根据该约定,完成下列各题.
(1)若点A(1,r)与点B(s,4)是关于x的“T函数”y=的图象上的一对“T点”,则r=   ,s=   ,t=   (将正确答案填在相应的横线上);
(2)关于x的函数y=kx+p(k,p是常数)是“T函数”吗?如果是,指出它有多少对“T点”如果不是,请说明理由;
(3)若关于x的“T函数”y=ax2+bx+c(a>0,且a,b,c是常数)经过坐标原点O,且与直线l:y=mx+n(m≠0,n>0,且m,n是常数)交于M(x1,y1),N(x2,y2)两点,当x1,x2满足(1﹣x1)﹣1+x2=1时,直线l是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.
3.(2022 长沙)如图,四边形ABCD内接于⊙O,对角线AC,BD相交于点E,点F在边AD上,连接EF.
(1)求证:△ABE∽△DCE;
(2)当=,∠DFE=2∠CDB时,则﹣=   ;+=   ;+﹣=   .(直接将结果填写在相应的横线上)
(3)①记四边形ABCD,△ABE,△CDE的面积依次为S,S1,S2,若满足=+,试判断△ABE,△CDE的形状,并说明理由.
②当=,AB=m,AD=n,CD=p时,试用含m,n,p的式子表示AE CE.
4.(2022 长沙)若关于x的函数y,当t﹣≤x≤t+时,函数y的最大值为M,最小值为N,令函数h=,我们不妨把函数h称之为函数y的“共同体函数”.
(1)①若函数y=4044x,当t=1时,求函数y的“共同体函数”h的值;
②若函数y=kx+b(k≠0,k,b为常数),求函数y的“共同体函数”h的解析式;
(2)若函数y=(x≥1),求函数y的“共同体函数”h的最大值;
(3)若函数y=﹣x2+4x+k,是否存在实数k,使得函数y的最大值等于函数y的“共同体函数“h的最小值.若存在,求出k的值;若不存在,请说明理由.
湘潭
5.(2021 湘潭)如图,一次函数y=x﹣图象与坐标轴交于点A、B,二次函数y=x2+bx+c图象过A、B两点.
(1)求二次函数解析式;
(2)点B关于抛物线对称轴的对称点为点C,点P是对称轴上一动点,在抛物线上是否存在点Q,使得以B、C、P、Q为顶点的四边形是菱形?若存在,求出Q点坐标;若不存在,请说明理由.
6.(2021 湘潭)德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿”.
如图①,点C把线段AB分成两部分,如果=≈0.618,那么称点C为线段AB的黄金分割点.
(1)特例感知:在图①中,若AB=100,求AC的长;
(2)知识探究:如图②,作⊙O的内接正五边形;
①作两条相互垂直的直径MN、AI;
②作ON的中点P,以P为圆心,PA为半径画弧交OM于点Q;
③以点A为圆心,AQ为半径,在⊙O上连续截取等弧,使弦AB=BC=CD=DE=AQ,连接AE;
则五边形ABCDE为正五边形.
在该正五边形作法中,点Q是否为线段OM的黄金分割点?请说明理由;
(3)拓展应用:国旗和国徽上的五角星是革命和光明的象征,是一个非常优美的几何图形,与黄金分割有着密切的联系.
延长题(2)中的正五边形ABCDE的每条边,相交可得到五角星,摆正后如图③,点E是线段PD的黄金分割点,请利用题中的条件,求cos72°的值.
7.(2022 湘潭)在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,过点B、C分别作l的垂线,垂足分别为点D、E.
(1)特例体验:如图①,若直线l∥BC,AB=AC=,分别求出线段BD、CE和DE的长;
(2)规律探究:
(Ⅰ)如图②,若直线l从图①状态开始绕点A旋转α(0<α<45°),请探究线段BD、CE和DE的数量关系并说明理由;
(Ⅱ)如图③,若直线l从图①状态开始绕点A顺时针旋转α(45°<α<90°),与线段BC相交于点H,请再探线段BD、CE和DE的数量关系并说明理由;
(3)尝试应用:在图③中,延长线段BD交线段AC于点F,若CE=3,DE=1,求S△BFC.
8.(2022 湘潭)已知抛物线y=x2+bx+c.
(1)如图①,若抛物线与x轴交于点A(3,0),与y轴交点B(0,﹣3),连接AB.
(Ⅰ)求该抛物线所表示的二次函数表达式;
(Ⅱ)若点P是抛物线上一动点(与点A不重合),过点P作PH⊥x轴于点H,与线段AB交于点M,是否存在点P使得点M是线段PH的三等分点?若存在,请求出点P的坐标;若不存在,请说明理由.
(2)如图②,直线y=x+n与y轴交于点C,同时与抛物线y=x2+bx+c交于点D(﹣3,0),以线段CD为边作菱形CDFE,使点F落在x轴的正半轴上,若该抛物线与线段CE没有交点,求b的取值范围.
株洲
9.(2021 株洲)如图所示,在平面直角坐标系xOy中,一次函数y=2x的图象l与函数y=(k>0,x>0)的图象(记为Γ)交于点A,过点A作AB⊥y轴于点B,且AB=1,点C在线段OB上(不含端点),且OC=t,过点C作直线l1∥x轴,交l于点D,交图象Γ于点E.
(1)求k的值,并且用含t的式子表示点D的横坐标;
(2)连接OE、BE、AE,记△OBE、△ADE的面积分别为S1、S2,设U=S1﹣S2,求U的最大值.
10.(2021 株洲)如图所示,AB是⊙O的直径,点C、D是⊙O上不同的两点,直线BD交线段OC于点E、交过点C的直线CF于点F,若OC=3CE,且9(EF2﹣CF2)=OC2.
(1)求证:直线CF是⊙O的切线;
(2)连接OD、AD、AC、DC,若∠COD=2∠BOC.
①求证:△ACD∽△OBE;
②过点E作EG∥AB,交线段AC于点G,点M为线段AC的中点,若AD=4,求线段MG的长度.
11.(2021 株洲)已知二次函数y=ax2+bx+c(a>0).
(1)若a=,b=c=﹣2,求方程ax2+bx+c=0的根的判别式的值;
(2)如图所示,该二次函数的图象与x轴交于点A(x1,0)、B(x2,0),且x1<0<x2,与y轴的负半轴交于点C,点D在线段OC上,连接AC、BD,满足∠ACO=∠ABD,﹣+c=x1.
①求证:△AOC≌△DOB;
②连接BC,过点D作DE⊥BC于点E,点F(0,x1﹣x2)在y轴的负半轴上,连接AF,且∠ACO=∠CAF+∠CBD,求的值.
12.(2022 株洲)如图所示,△ABC的顶点A,B在⊙O上,顶点C在⊙O外,边AC与⊙O相交于点D,∠BAC=45°,连接OB、OD,已知OD∥BC.
(1)求证:直线BC是⊙O的切线;
(2)若线段OD与线段AB相交于点E,连接BD.
①求证:△ABD∽△DBE;
②若AB BE=6,求⊙O的半径的长度.
13.(2022 株洲)已知二次函数y=ax2+bx+c(a>0).
(1)若a=1,b=3,且该二次函数的图象过点(1,1),求c的值;
(2)如图所示,在平面直角坐标系xOy中,该二次函数的图象与x轴相交于不同的两点A(x1,0)、B(x2,0),其中x1<0<x2、|x1|>|x2|,且该二次函数的图象的顶点在矩形ABFE的边EF上,其对称轴与x轴、BE分别交于点M、N,BE与y轴相交于点P,且满足tan∠ABE=.
①求关于x的一元二次方程ax2+bx+c=0的根的判别式的值;
②若NP=2BP,令T=c,求T的最小值.
阅读材料:十六世纪的法国数学家弗朗索瓦 韦达发现了一元二次方程的根与系数之间的关系,可表述为“当判别式Δ≥0时,关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根x1、x2有如下关系:x1+x2=,x1x2=”.此关系通常被称为“韦达定理”.
衡阳
14.(2021 衡阳)如图,△OAB的顶点坐标分别为O(0,0),A(3,4),B(6,0),动点P、Q同时从点O出发,分别沿x轴正方向和y轴正方向运动,速度分别为每秒3个单位和每秒2个单位,点P到达点B时点P、Q同时停止运动.过点Q作MN∥OB分别交AO、AB于点M、N,连接PM、PN.设运动时间为t(秒).
(1)求点M的坐标(用含t的式子表示);
(2)求四边形MNBP面积的最大值或最小值;
(3)是否存在这样的直线l,总能平分四边形MNBP的面积?如果存在,请求出直线l的解析式;如果不存在,请说明理由;
(4)连接AP,当∠OAP=∠BPN时,求点N到OA的距离.
15.(2021 衡阳)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如(1,1),(2021,2021)…都是“雁点”.
(1)求函数y=图象上的“雁点”坐标;
(2)若抛物线y=ax2+5x+c上有且只有一个“雁点”E,该抛物线与x轴交于M、N两点(点M在点N的左侧).当a>1时.
①求c的取值范围;
②求∠EMN的度数;
(3)如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左侧),P是抛物线y=﹣x2+2x+3上一点,连接BP,以点P为直角顶点,构造等腰Rt△BPC,是否存在点P,使点C恰好为“雁点”?若存在,求出点P的坐标;若不存在,请说明理由.
16.(2022 衡阳)如图,已知抛物线y=x2﹣x﹣2交x轴于A、B两点,将该抛物线位于x轴下方的部分沿x轴翻折,其余部分不变,得到的新图象记为“图象W”,图象W交y轴于点C.
(1)写出图象W位于线段AB上方部分对应的函数关系式;
(2)若直线y=﹣x+b与图象W有三个交点,请结合图象,直接写出b的值;
(3)P为x轴正半轴上一动点,过点P作PM∥y轴交直线BC于点M,交图象W于点N,是否存在这样的点P,使△CMN与△OBC相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.
17.(2022 衡阳)如图,在菱形ABCD中,AB=4,∠BAD=60°,点P从点A出发,沿线段AD以每秒1个单位长度的速度向终点D运动,过点P作PQ⊥AB于点Q,作PM⊥AD交直线AB于点M,交直线BC于点F,设△PQM与菱形ABCD重叠部分图形的面积为S(平方单位),点P运动时间为t(秒).
(1)当点M与点B重合时,求t的值;
(2)当t为何值时,△APQ与△BMF全等;
(3)求S与t的函数关系式;
(4)以线段PQ为边,在PQ右侧作等边三角形PQE,当2≤t≤4时,求点E运动路径的长.
郴州
18.(2021 郴州)如图1,在等腰直角三角形ABC中,∠BAC=90°,点E,F分别为AB,AC的中点,H为线段EF上一动点(不与点E,F重合),将线段AH绕点A逆时针方向旋转90°得到AG,连接GC,HB.
(1)证明:△AHB≌△AGC;
(2)如图2,连接GF,HG,HG交AF于点Q.
①证明:在点H的运动过程中,总有∠HFG=90°;
②若AB=AC=4,当EH的长度为多少时△AQG为等腰三角形?
19.(2021 郴州)将抛物线y=ax2(a≠0)向左平移1个单位,再向上平移4个单位后,得到抛物线H:y=a(x﹣h)2+k.抛物线H与x轴交于点A,B,与y轴交于点C.已知A(﹣3,0),点P是抛物线H上的一个动点.
(1)求抛物线H的表达式;
(2)如图1,点P在线段AC上方的抛物线H上运动(不与A,C重合),过点P作PD⊥AB,垂足为D,PD交AC于点E.作PF⊥AC,垂足为F,求△PEF的面积的最大值;
(3)如图2,点Q是抛物线H的对称轴l上的一个动点,在抛物线H上,是否存在点P,使得以点A,P,C,Q为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.
20.(2022 郴州)如图1,在△ABC中,AC=BC,∠ACB=90°,AB=4cm.点D从A点出发,沿线段AB向终点B运动.过点D作AB的垂线,与△ABC的直角边AC(或BC)相交于点E.设线段AD的长为a(cm),线段DE的长为h(cm).
(1)为了探究变量a与h之间的关系,对点D在运动过程中不同时刻AD,DE的长度进行测量,得出以下几组数据:
变量a(cm) 0 0.5 1 1.5 2 2.5 3 3.5 4
变量h(cm) 0 0.5 1 1.5 2 1.5 1 0.5 0
在平面直角坐标系中,以变量a的值为横坐标,变量h的值为纵坐标,描点如图2﹣1;以变量h的值为横坐标,变量a的值为纵坐标,描点如图2﹣2.
根据探究的结果,解答下列问题:
①当a=1.5时,h=   ;当h=1时,a=   .
②将图2﹣1,图2﹣2中描出的点顺次连接起来.
③下列说法正确的是    .(填“A”或“B”)
A.变量h是以a为自变量的函数
B.变量a是以h为自变量的函数
(2)如图3,记线段DE与△ABC的一直角边、斜边围成的三角形(即阴影部分)的面积(cm2)为s.
①分别求出当0≤a≤2和2<a≤4时,s关于a的函数表达式;
②当s=时,求a的值.
21.(2022 郴州)如图1,在矩形ABCD中,AB=4,BC=6.点E是线段AD上的动点(点E不与点A,D重合),连接CE,过点E作EF⊥CE,交AB于点F.
(1)求证:△AEF∽△DCE;
(2)如图2,连接CF,过点B作BG⊥CF,垂足为G,连接AG.点M是线段BC的中点,连接GM.
①求AG+GM的最小值;
②当AG+GM取最小值时,求线段DE的长.
22.(2022 郴州)已知抛物线y=x2+bx+c与x轴相交于点A(﹣1,0),B(3,0),与y轴相交于点C.
(1)求抛物线的表达式;
(2)如图1,将直线BC向上平移,得到过原点O的直线MN.点D是直线MN上任意一点.
①当点D在抛物线的对称轴l上时,连接CD,与x轴相交于点E,求线段OE的长;
②如图2,在抛物线的对称轴l上是否存在点F,使得以B,C,D,F为顶点的四边形是平行四边形?若存在,求出点F与点D的坐标;若不存在,请说明理由.
永州
23.(2021 永州)如图1,AB是⊙O的直径,点E是⊙O上一动点,且不与A,B两点重合,∠EAB的平分线交⊙O于点C,过点C作CD⊥AE,交AE的延长线于点D.
(1)求证:CD是⊙O的切线;
(2)求证:AC2=2AD AO;
(3)如图2,原有条件不变,连接BE,BC,延长AB至点M,∠EBM的平分线交AC的延长线于点P,∠CAB的平分线交∠CBM的平分线于点Q.求证:无论点E如何运动,总有∠P=∠Q.
24.(2021 永州)已知关于x的二次函数y1=x2+bx+c(实数b,c为常数).
(1)若二次函数的图象经过点(0,4),对称轴为x=1,求此二次函数的表达式;
(2)若b2﹣c=0,当b﹣3≤x≤b时,二次函数的最小值为21,求b的值;
(3)记关于x的二次函数y2=2x2+x+m,若在(1)的条件下,当0≤x≤1时,总有y2≥y1,求实数m的最小值.
25.(2022 永州)如图,已知AB,CE是⊙O的直径,BM是⊙O的切线,点D在EA的延长线上,AC,OD交于点F,∠MBC=∠ACD.
(1)求证:∠MBC=∠BAC;
(2)求证:AE=AD;
(3)若△OFC的面积S1=4,求四边形AOCD的面积S.
26.(2022 永州)已知关于x的函数y=ax2+bx+c.
(1)若a=1,函数的图象经过点(1,﹣4)和点(2,1),求该函数的表达式和最小值;
(2)若a=1,b=﹣2,c=m+1时,函数的图象与x轴有交点,求m的取值范围.
(3)阅读下面材料:
设a>0,函数图象与x轴有两个不同的交点A,B,若A,B两点均在原点左侧,探究系数a,b,c应满足的条件,根据函数图象,思考以下三个方面:
①因为函数的图象与x轴有两个不同的交点,所以Δ=b2﹣4ac>0;
②因为A,B两点在原点左侧,所以x=0对应图象上的点在x轴上方,即c>0;
③上述两个条件还不能确保A,B两点均在原点左侧,我们可以通过抛物线的对称轴位置来进一步限制抛物线的位置:即需﹣<0.
综上所述,系数a,b,c应满足的条件可归纳为:
请根据上面阅读材料,类比解决下面问题:
若函数y=ax2﹣2x+3的图象在直线x=1的右侧与x轴有且只有一个交点,求a的取值范围.
娄底
27.(2021 娄底)如图①,E、F是等腰Rt△ABC的斜边BC上的两动点,∠EAF=45°,CD⊥BC且CD=BE.
(1)求证:△ABE≌△ACD;
(2)求证:EF2=BE2+CF2;
(3)如图②,作AH⊥BC,垂足为H,设∠EAH=α,∠FAH=β,不妨设AB=,请利用(2)的结论证明:当α+β=45°时,tan(α+β)=成立.
28.(2021 娄底)如图,在直角坐标系中,二次函数y=x2+bx+c的图象与x轴相交于点A(﹣1,0)和点B(3,0),与y轴交于点C.
(1)求b、c的值;
(2)点P(m,n)为抛物线上的动点,过P作x轴的垂线交直线l:y=x于点Q.
①当0<m<3时,求当P点到直线l:y=x的距离最大时m的值;
②是否存在m,使得以点O、C、P、Q为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出m的值.
29.(2022 娄底)如图,已知BD是Rt△ABC的角平分线,点O是斜边AB上的动点,以点O为圆心,OB长为半径的⊙O经过点D,与OA相交于点E.
(1)判定AC与⊙O的位置关系,为什么?
(2)若BC=3,CD=,
①求sin∠DBC、sin∠ABC的值;
②试用sin∠DBC和cos∠DBC表示sin∠ABC,猜测sin2α与sinα、cosα的关系,并用α=30°给予验证.
30.(2022 娄底)如图,抛物线y=x2﹣2x﹣6与x轴相交于点A、点B,与y轴相交于点C.
(1)请直接写出点A,B,C的坐标;
(2)点P(m,n)(0<m<6)在抛物线上,当m取何值时,△PBC的面积最大?并求出△PBC面积的最大值.
(3)点F是抛物线上的动点,作FE∥AC交x轴于点E,是否存在点F,使得以A、C、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由.
邵阳
31.(2021 邵阳)如图,在平面直角坐标系中,抛物线C:y=ax2+bx+c(a≠0)经过点(1,1)和(4,1).
(1)求抛物线C的对称轴.
(2)当a=﹣1时,将抛物线C向左平移2个单位,再向下平移1个单位,得到抛物线C1.
①求抛物线C1的解析式.
②设抛物线C1与x轴交于A,B两点(点A在点B的右侧),与y轴交于点C,连接BC.点D为第一象限内抛物线C1上一动点,过点D作DE⊥OA于点E.设点D的横坐标为m.是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.
32.(2021 邵阳)如图,在Rt△ABC中,点P为斜边BC上一动点,将△ABP沿直线AP折叠,使得点B的对应点为B′,连接AB′,CB′,BB′,PB′.
(1)如图①,若PB′⊥AC,证明:PB′=AB′.
(2)如图②,若AB=AC,BP=3PC,求cos∠B′AC的值.
(3)如图③,若∠ACB=30°,是否存在点P,使得AB=CB′.若存在,求此时的值;若不存在,请说明理由.
33.(2022 邵阳)如图,已知直线y=2x+2与抛物线y=ax2+bx+c相交于A,B两点,点A在x轴上,点B在y轴上,点C(3,0)在抛物线上.
(1)求该抛物线的表达式.
(2)正方形OPDE的顶点O为直角坐标系原点,顶点P在线段OC上,顶点E在y轴正半轴上,若△AOB与△DPC全等,求点P的坐标.
(3)在条件(2)下,点Q是线段CD上的动点(点Q不与点D重合),将△PQD沿PQ所在的直线翻折得到△PQD',连接CD',求线段CD'长度的最小值.
益阳
34.(2021 益阳)如图,在等腰锐角三角形ABC中,AB=AC,过点B作BD⊥AC于D,延长BD交△ABC的外接圆于点E,过点A作AF⊥CE于F,AE,BC的延长线交于点G.
(1)判断EA是否平分∠DEF,并说明理由;
(2)求证:①BD=CF;
②BD2=DE2+AE EG.
35.(2021 益阳)已知函数y=的图象如图所示,点A(x1,y1)在第一象限内的函数图象上.
(1)若点B(x2,y2)也在上述函数图象上,满足x2<x1.
①当y2=y1=4时,求x1,x2的值;
②若|x2|=|x1|,设w=y1﹣y2,求w的最小值;
(2)过A点作y轴的垂线AP,垂足为P,点P关于x轴的对称点为P′,过A点作x轴的垂线AQ,垂足为Q,Q关于直线AP′的对称点为Q′,直线AQ′是否与y轴交于某定点?若是,求出这个定点的坐标;若不是,请说明理由.
36.(2022 益阳)如图,在平面直角坐标系xOy中,抛物线E:y=﹣(x﹣m)2+2m2(m<0)的顶点P在抛物线F:y=ax2上,直线x=t与抛物线E,F分别交于点A,B.
(1)求a的值;
(2)将A,B的纵坐标分别记为yA,yB,设s=yA﹣yB,若s的最大值为4,则m的值是多少?
(3)Q是x轴的正半轴上一点,且PQ的中点M恰好在抛物线F上.试探究:此时无论m为何负值,在y轴的负半轴上是否存在定点G,使∠PQG总为直角?若存在,请求出点G的坐标;若不存在,请说明理由.
37.(2022 益阳)如图,矩形ABCD中,AB=15,BC=9,E是CD边上一点(不与点C重合),作AF⊥BE于F,CG⊥BE于G,延长CG至点C′,使C′G=CG,连接CF,AC′.
(1)直接写出图中与△AFB相似的一个三角形;
(2)若四边形AFCC′是平行四边形,求CE的长;
(3)当CE的长为多少时,以C′,F,B为顶点的三角形是以C′F为腰的等腰三角形?
常德
38.(2021 常德)如图,在平面直角坐标系xOy中,平行四边形ABCD的AB边与y轴交于E点,F是AD的中点,B、C、D的坐标分别为(﹣2,0),(8,0),(13,10).
(1)求过B、E、C三点的抛物线的解析式;
(2)试判断抛物线的顶点是否在直线EF上;
(3)设过F与AB平行的直线交y轴于Q,M是线段EQ之间的动点,射线BM与抛物线交于另一点P,当△PBQ的面积最大时,求P的坐标.
39.(2021 常德)如图1,在△ABC中,AB=AC,N是BC边上的一点,D为AN的中点,过点A作BC的平行线交CD的延长线于T,且AT=BN,连接BT.
(1)求证:BN=CN;
(2)在图1中AN上取一点O,使AO=OC,作N关于边AC的对称点M,连接MT、MO、OC、OT、CM得图2.
①求证:△TOM∽△AOC;
②设TM与AC相交于点P,连接PD,求证:PD∥CM,PD=CM.
40.(2022 常德)如图,已知抛物线过点O(0,0),A(5,5),且它的对称轴为x=2,点B是抛物线对称轴上的一点,且点B在第一象限.
(1)求此抛物线的解析式;
(2)当△OAB的面积为15时,求B的坐标;
(3)在(2)的条件下,P是抛物线上的动点,当PA﹣PB的值最大时,求P的坐标以及PA﹣PB的最大值.
41.(2022 常德)在四边形ABCD中,∠BAD的平分线AF交BC于F,延长AB到E使BE=FC,G是AF的中点,GE交BC于O,连接GD.
(1)当四边形ABCD是矩形时,如图1,求证:①GE=GD;②BO GD=GO FC.
(2)当四边形ABCD是平行四边形时,如图2,(1)中的结论都成立.请给出结论②的证明.
岳阳
42.(2021 岳阳)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,点D为AB的中点,连接CD,将线段CD绕点D顺时针旋转α(60°<α<120°)得到线段ED,且ED交线段BC于点G,∠CDE的平分线DM交BC于点H.
(1)如图1,若α=90°,则线段ED与BD的数量关系是    ,=   ;
(2)如图2,在(1)的条件下,过点C作CF∥DE交DM于点F,连接EF,BE.
①试判断四边形CDEF的形状,并说明理由;
②求证:=;
(3)如图3,若AC=2,tan(α﹣60°)=m,过点C作CF∥DE交DM于点F,连接EF,BE,请直接写出的值(用含m的式子表示).
43.(2021 岳阳)如图,抛物线y=ax2+bx+2经过A(﹣1,0),B(4,0)两点,与y轴交于点C,连接BC.
(1)求该抛物线的函数表达式;
(2)如图2,直线l:y=kx+3经过点A,点P为直线l上的一个动点,且位于x轴的上方,点Q为抛物线上的一个动点,当PQ∥y轴时,作QM⊥PQ,交抛物线于点M(点M在点Q的右侧),以PQ,QM为邻边构造矩形PQMN,求该矩形周长的最小值;
(3)如图3,设抛物线的顶点为D,在(2)的条件下,当矩形PQMN的周长取最小值时,抛物线上是否存在点F,使得∠CBF=∠DQM?若存在,请求出点F的坐标;若不存在,请说明理由.
44.(2022 岳阳)如图,△ABC和△DBE的顶点B重合,∠ABC=∠DBE=90°,∠BAC=∠BDE=30°,BC=3,BE=2.
(1)特例发现:如图1,当点D,E分别在AB,BC上时,可以得出结论:=   ,直线AD与直线CE的位置关系是    ;
(2)探究证明:如图2,将图1中的△DBE绕点B顺时针旋转,使点D恰好落在线段AC上,连接EC,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;
(3)拓展运用:如图3,将图1中的△DBE绕点B顺时针旋转α(19°<α<60°),连接AD、EC,它们的延长线交于点F,当DF=BE时,求tan(60°﹣α)的值.
45.(2022 岳阳)如图1,在平面直角坐标系xOy中,抛物线F1:y=x2+bx+c经过点A(﹣3,0)和点B(1,0).
(1)求抛物线F1的解析式;
(2)如图2,作抛物线F2,使它与抛物线F1关于原点O成中心对称,请直接写出抛物线F2的解析式;
(3)如图3,将(2)中抛物线F2向上平移2个单位,得到抛物线F3,抛物线F1与抛物线F3相交于C,D两点(点C在点D的左侧).
①求点C和点D的坐标;
②若点M,N分别为抛物线F1和抛物线F3上C,D之间的动点(点M,N与点C,D不重合),试求四边形CMDN面积的最大值.
张家界
46.(2021 张家界)阅读下面的材料:
如果函数y=f(x)满足:对于自变量x取值范围内的任意x1,x2,
(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;
(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数.
例题:证明函数f(x)=x2(x>0)是增函数.
证明:任取x1<x2,且x1>0,x2>0.
则f(x1)﹣f(x2)=x12﹣x22=(x1+x2)(x1﹣x2).
∵x1<x2且x1>0,x2>0,
∴x1+x2>0,x1﹣x2<0.
∴(x1+x2)(x1﹣x2)<0,即f(x1)﹣f(x2)<0,f(x1)<f(x2).
∴函数f(x)=x2(x>0)是增函数.
根据以上材料解答下列问题:
(1)函数f(x)=(x>0),f(1)==1,f(2)=,f(3)=   ,f(4)=   ;
(2)猜想f(x)=(x>0)是    函数(填“增”或“减”),并证明你的猜想.
47.(2021 张家界)如图,已知二次函数y=ax2+bx+c的图象经过点C(2,﹣3),且与x轴交于原点及点B(8,0).
(1)求二次函数的表达式;
(2)求顶点A的坐标及直线AB的表达式;
(3)判断△ABO的形状,试说明理由;
(4)若点P为⊙O上的动点,且⊙O的半径为2,一动点E从点A出发,以每秒2个单位长度的速度沿线段AP匀速运动到点P,再以每秒1个单位长度的速度沿线段PB匀速运动到点B后停止运动,求点E的运动时间t的最小值.
48.(2022 张家界)如图,已知抛物线y=ax2+bx+3(a≠0)与x轴交于A(1,0),B(4,0)两点,与y轴交于点C,点D为抛物线的顶点.
(1)求抛物线的函数表达式及点D的坐标;
(2)若四边形BCEF为矩形,CE=3.点M以每秒1个单位的速度从点C沿CE向点E运动,同时点N以每秒2个单位的速度从点E沿EF向点F运动,一点到达终点,另一点随之停止.当以M、E、N为顶点的三角形与△BOC相似时,求运动时间t的值;
(3)抛物线的对称轴与x轴交于点P,点G是点P关于点D的对称点,点Q是x轴下方抛物线上的动点.若过点Q的直线l:y=kx+m(|k|)与抛物线只有一个公共点,且分别与线段GA、GB相交于点H、K,求证:GH+GK为定值.
49.(2021 湘西州)如图,已知抛物线y=ax2+bx+4经过A(﹣1,0),B(4,0)两点,交y轴于点C.
(1)求抛物线的解析式;
(2)连接BC,求直线BC的解析式;
(3)请在抛物线的对称轴上找一点P,使AP+PC的值最小,求点P的坐标,并求出此时AP+PC的最小值;
(4)点M为x轴上一动点,在抛物线上是否存在一点N,使得以A、C、M、N四点为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.
湘西州
50.(2022 湘西州)定义:由两条与x轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”,如图①,抛物线C1:y=x2+2x﹣3与抛物线C2:y=ax2+2ax+c组成一个开口向上的“月牙线”,抛物线C1和抛物线C2与x轴有着相同的交点A(﹣3,0)、B(点B在点A右侧),与y轴的交点分别为G、H(0,﹣1).
(1)求抛物线C2的解析式和点G的坐标.
(2)点M是x轴下方抛物线C1上的点,过点M作MN⊥x轴于点N,交抛物线C2于点D,求线段MN与线段DM的长度的比值.
(3)如图②,点E是点H关于抛物线对称轴的对称点,连接EG,在x轴上是否存在点F,使得△EFG是以EG为腰的等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.
51.(2021 怀化)某超市从厂家购进A、B两种型号的水杯,两次购进水杯的情况如表:
进货批次 A型水杯(个) B型水杯(个) 总费用(元)
一 100 200 8000
二 200 300 13000
(1)求A、B两种型号的水杯进价各是多少元?
(2)在销售过程中,A型水杯因为物美价廉而更受消费者喜欢.为了增大B型水杯的销售量,超市决定对B型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B型水杯降价多少元时,每天售出B型水杯的利润达到最大?最大利润是多少?
(3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个A型水杯可获利10元,售出一个B型水杯可获利9元,超市决定每售出一个A型水杯就为当地“新冠疫情防控”捐b元用于购买防控物资.若A、B两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时b为多少?利润为多少?
52.(2021 怀化)如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OB=4,OC=8,抛物线的对称轴与直线BC交于点M,与x轴交于点N.
(1)求抛物线的解析式;
(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与△MNB相似?若存在,求出点P的坐标,若不存在,请说明理由;
(3)D为CO的中点,一个动点G从D点出发,先到达x轴上的点E,再走到抛物线对称轴上的点F,最后返回到点C.要使动点G走过的路程最短,请找出点E、F的位置,写出坐标,并求出最短路程.
(4)点Q是抛物线上位于x轴上方的一点,点R在x轴上,是否存在以点Q为直角顶点的等腰Rt△CQR?若存在,求出点Q的坐标,若不存在,请说明理由.
53.(2022 怀化)去年防汛期间,某部门从超市购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双),其中购买雨衣用了400元,购买雨鞋用了350元,已知每件雨衣比每双雨鞋贵5元.
(1)求每件雨衣和每双雨鞋各多少元?
(2)为支持今年防汛工作,该超市今年的雨衣和雨鞋单价在去年的基础上均下降了20%,并按套(即一件雨衣和一双雨鞋为一套)优惠销售.优惠方案为:若一次购买不超过5套,则每套打九折;若一次购买超过5套,则前5套打九折,超过部分每套打八折.设今年该部门购买了a套,购买费用为W元,请写出W关于a的函数关系式.
(3)在(2)的情况下,今年该部门购买费用不超过320元时最多可购买多少套?
54.(2022 怀化)如图一所示,在平面直角坐标系中,抛物线y=ax2+2x+c经过点A(﹣1,0)、B(3,0),与y轴交于点C,顶点为点D.在线段CB上方的抛物线上有一动点P,过点P作PE⊥BC于点E,作PF∥AB交BC于点F.
(1)求抛物线和直线BC的函数表达式.
(2)当△PEF的周长为最大值时,求点P的坐标和△PEF的周长.
(3)若点G是抛物线上的一个动点,点M是抛物线对称轴上的一个动点,是否存在以C、B、G、M为顶点的四边形为平行四边形?若存在,求出点G的坐标,若不存在,请说明理由.
参考答案
一.解答题(共54小题)
1.【解答】解:(1)如图,连接OP.
∵四边形MNPQ是正方形,
∴∠OMQ=∠ONP=90°,MQ=PN,
∵OQ=OP,
∴Rt△OMQ≌Rt△ONP(HL),
∴OM=ON,
设OM=ON=m,则MQ=2m,OQ==m,
∴sin∠AOQ===.
(2)由(1)可知OM=ON=m,OQ=OA=m,MN=2m,
∴AM=OA﹣OM=m﹣m,
∴==.
(3)∵AB=2R,
∴OA=OB=OQ=R,
∵QM=2MO,
∴OM=,MQ=,
∵AB是直径,
∴∠ACB=∠DCE=90°,
∵∠CED=∠AEM,
∴∠A=∠D,
∵∠AME=∠DMB=90°,
∴△AME∽△DMB,
∴=,
∴=,
∴y=﹣,
当点C与P重合时,=,
∴=,
∴x=R,
∴R<x<R.
2.【解答】解:(1)∵A,B关于y轴对称,
∴s=﹣1,r=4,
∴A的坐标为(1,4),
把A(1,4)代入是关于x的“T函数”中,得:t=4,
故答案为r=4,s=﹣1,t=4;
(2)当k=0时,有y=p,
此时存在关于y轴对称的点,
∴y=kx+p是“T函数”,且有无数对“T”点,
当k≠0时,不存在关于y轴对称的点,
若存在,设其中一点(x0,kx0+p),则对称点(﹣x0,﹣kx0+p),
∴kx0+p=﹣kx0+p,
∴k=0,与k≠0矛盾,
∴不存在,
∴y=kx+p不是“T函数”;
(3)∵y=ax2+bx+c过原点,
∴c=0,
∵y=ax2+bx+c是“T函数”,
∴b=0,
∴y=ax2,
联立直线l和抛物线得:

即:ax2﹣mx﹣n=0,
,,
又∵,
化简得:x1+x2=x1x2,
∴,即m=﹣n,
∴y=mx+n=mx﹣m,
当x=1时,y=0,
∴直线l必过定点(1,0).
3.【解答】(1)证明:∵,
∴∠ACD=∠ABD,即∠ABE=∠DCE,
又∵∠DEC=∠AEB,
∴△ABE∽△DCE;
(2)解:∵△ABE∽△DCE,
∴==,
∴AE CE=BE DE,
∴﹣==0,
∵∠CDB+∠CBD=180°﹣∠BCD=∠DAB=2∠CDB,
又∵∠DFE=2∠CDB,
∴∠DFE=∠DAB,
∴EF∥AB,
∴∠FEA=∠EAB,
∵=,
∴∠DAC=∠BAC,
∴∠FAE=∠FEA,
∴FA=FE,
∵EF∥AB,
∴△DFE∽△DAB,
∴=,
∴====1,
∵+==1,
∴+=1,
∴=0,
故答案为:0,1,0;
(3)解:①△ABE,△DCE都为等腰三角形,
理由:记△ADE、△EBC的面积为S3、S4,
则S=S1+S +S3+S4,
∵==,
∴S1S2=S3S4①,
∵,
即S=S1+S2+2,
∴S3+S4=2②,
由①②可得S3+S4=2,
即(﹣)2=0,
∴S3=S4,
∴S△ABE+S△ADE=S△ABE+S△EBC,
即S△ABD=S△ABC,
∴CD∥AB,
∴∠ACD=∠BAC,∠CDB=∠DBA,
∵∠ACD=∠ABD,∠CDB=∠CAB,
∴∠EDC=∠ECD=∠EBA=∠EAB,
∴△ABE,△DCE都为等腰三角形;
②∵=,
∴∠DAC=∠EAB,
∵∠DCA=∠EBA,
∴△DAC∽△EAB,
∴=,
∵AB=m,AD=n,CD=p,
∴EA AC=DA×AB=mn,
∵∠BDC=∠BAC=∠DAC,
∴∠CDE=∠CAD,
又∠ECD=∠DCA,
∴△DCE∽△ACD,
∴=,
∴EA AC+CE AC=AC2=mn+p2,
则AC=,.EC==,
∴AE=AC﹣CE=,
∴AE CE=.
4.【解答】解:(1)①∵t=1,
∴≤x≤,
∵函数y=4044x,
∴函数的最大值M=6066,函数的最小值N=2022,
∴h=2022;
②当k>0时,函数y=kx+b在t﹣≤x≤t+有最大值M=kt+k+b,有最小值N=kt﹣k+b,
∴h=k;
当k<0时,函数y=kx+b在t﹣≤x≤t+有最大值M=kt﹣k+b,有最小值N=kt+k+b,
∴h=﹣k;
综上所述:h=|k|;
(2)t﹣≥1,即t≥,
函数y=(x≥1)最大值M=,最小值N=,
∴h=,
当t=时,h有最大值;
(3)存在实数k,使得函数y的最大值等于函数y的“共同体函数“h的最小值,理由如下:
∵y=﹣x2+4x+k=﹣(x﹣2)2+4+k,
∴函数的对称轴为直线x=2,y的最大值为4+k,
①当2≤t﹣时,即t≥,
此时M=﹣(t﹣﹣2)2+4+k,N=﹣(t+﹣2)2+4+k,
∴h=t﹣2,
此时h的最小值为;
②当t+≤2时,即t≤,
此时N=﹣(t﹣﹣2)2+4+k,M=﹣(t+﹣2)2+4+k,
∴h=2﹣t,
此时h的最小值为;
③当t﹣≤2≤t,即2≤t≤,
此时N=﹣(t+﹣2)2+4+k,M=4+k,
∴h=(t﹣)2,
∴h的最小值为;
④当t<2≤t+,即≤t<2,
此时N=﹣(t﹣﹣2)2+4+k,M=4+k,
∴h=(t﹣)2,
∴h的最小值为;
h的函数图象如图所示:h的最小值为,
由题意可得=4+k,
解得k=﹣;
综上所述:k的值为﹣.
5.【解答】解:(1)在y=x﹣中,令x=0得y=﹣,令y=0得x=3,
∴A(3,0),B(0,﹣),
∵二次函数y=x2+bx+c图象过A、B两点,
∴,解得,
∴二次函数解析式为y=x2﹣x﹣;
(2)存在,理由如下:
由二次函数y=x2﹣x﹣可得其对称轴为直线x==1,
设P(1,m),Q(n,n2﹣n﹣),而B(0,﹣),
∵C与B关于直线x=1对称,
∴C(2,﹣),
①当BC、PQ为对角线时,如图:
此时BC的中点即是PQ的中点,即,
解得,
∴当P(1,﹣),Q(1,﹣)时,四边形BQCP是平行四边形,
由P(1,﹣),B(0,﹣),C(2,﹣)可得PB2==PC2,
∴PB=PC,
∴四边形BQCP是菱形,
∴此时Q(1,﹣);
②BP、CQ为对角线时,如图:
同理BP、CQ中点重合,可得,
解得,
∴当P(1,0),Q(﹣1,0)时,四边形BCPQ是平行四边形,
由P(1,0),B(0,﹣),C(2,﹣)可得BC2=4=PC2,
∴四边形BCPQ是菱形,
∴此时Q(﹣1,0);
③以BQ、CP为对角线,如图:
BQ、CP中点重合,可得,
解得,
∴P(1,0),Q(3,0)时,四边形BCQP是平行四边形,
由P(1,0),B(0,﹣),C(2,﹣)可得BC2=4=PC2,
∴四边形BCQP是菱形,
∴此时Q(3,0);
综上所述,Q的坐标为:(1,﹣)或(﹣1,0)或(3,0).
6.【解答】解:(1)根据黄金分割点的意义,
得=,
∵AB=100,
∴AC=50﹣50;
(2)Q是线段OM的黄金分割点,理由如下:
设⊙O的半径为r,则OP=r,
∴PQ=AP==r,
∴OQ=QP﹣OP=r﹣r=r,MQ=OM﹣OQ=r﹣r=r,
∴====,
即Q是线段OM的黄金分割点;
(3)如图③,作PH⊥AE于H,
由题可知,AH=HE,
∵正五边形的每个内角都为(5﹣2)×180°÷5=108°,
∴∠PEH=180°﹣108°=72°,
即cos∠PEH=cos72°=,
∵点E是线段PD的黄金分割点,
∴=,
又∵DE=AE,HE=AH=AE,
∴cos72°===×=×=.
7.【解答】解:(1)在△ABC中,∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,
∵l∥BC,
∴∠DAB=∠ABC=45°,∠CAE=∠ACB=45°,
∴∠DAB=∠ABD=45°,∠EAC=∠ACE=45°,
∴AD=BD,AE=CE,
∵AB=AC=,
∴AD=BD=AE=CE=1,
∴DE=2;
(2)(Ⅰ)DE=BD+CE.理由如下:
在Rt△ADB中,∠ABD+∠BAD=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
∴∠ABD=∠CAE,
在△ABD和△CAE中,

∴△ABD≌△CAE(AAS);
∴CE=AD,BD=AE,
∴DE=AE+AD=BD+CE.
(Ⅱ)DE=BD﹣CE.理由如下:
在Rt△ADB中,∠ABD+∠BAD=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
∴∠ABD=∠CAE,
在△ABD和△CAE中,

∴△ABD≌△CAE(AAS);
∴CE=AD,BD=AE,
∴DE=AE﹣AD=BD﹣CE.
(3)由(2)可知,∠ABD=∠CAE,DE=AE﹣AD=BD﹣CE
∵∠BAC=∠ADB=90°,
∴△ABD∽△FBA,
∴AB:FB=BD:AB,
∵CE=3,DE=1,
∴AE=BD=4,
∴AB=5.
∴BF=.
∴S△BFC=S△ABC﹣S△ABF=×52﹣×3×=.
8.【解答】(1)解:(Ⅰ)由题意得,

∴,
∴y=x2﹣2x﹣3;
(Ⅱ)存在点P,使得点M是线段PH的三等分点,理由如下:
∵B(0,﹣3),A(3,0),
∴直线AB的解析式为:y=x﹣3,
设点P(m,m2﹣2m﹣3),M(m,m﹣3),
∴PH=﹣m2+2m+3,HM=3﹣m,
当PH=3HM时,
﹣m2+2m+3=3(3﹣m),
化简得,
m2﹣5m+6=0,
∴m1=2,m2=3,
当m=2时,y=22﹣2×2﹣3=﹣3,
∴P(2,﹣3),
当m=3时,y=32﹣2×3﹣3=0,
此时P(3,0)(舍去),
当PH=HM时,
﹣m2+2m+3=(3﹣m),
化简得,
2m2﹣7m+3=0,
∴m3=3(舍去),m2=,
当m=时,y=()2﹣2×﹣3=﹣,
∴P(,﹣),
综上所述:P(2,﹣3)或(,﹣);
(2)如图1,
∵抛物线y=x2+bx+c过点D(﹣3,0),
∴(﹣3)2﹣3b+c=0,
∴c=3b﹣9,
∴y=x2+bx+(3b﹣9),
把x=﹣3,y=0代入y=+n得,
0=+n,
∴n=4,
∴OC=4,
∵∠COD=90°,OD=3,OC=4,
∴CD=5,
∵四边形CDFE是菱形,
∴CE=CD=5,
∴E(5,4),
当﹣<0时,即b>0时,
当x=0时,y=3b﹣9,
∴G(0,3b﹣9),
∵该抛物线与线段CE没有交点,
∴3b﹣9>4,
∴b>,
当b<0时,
当x=5时,y=25+5b+3b﹣9=8b+16,
∴H(5,8b+16),
∵抛物线与CE没有交点,
∴8b+16<4,
∴b<﹣,
综上所述:b>或b<﹣.
9.【解答】解:(1)∵AB⊥y轴,且AB=1,
∴点A的横坐标为1,
∵点A在直线y=2x上,
∴y=2×1=2,
∴点A(1,2),
∴B(0,2),
∵点A在函数y=上,
∴k=1×2=2,
∵OC=t,
∴C(0,t),
∵CE∥x轴,
∴点D的纵坐标为t,
∵点D在直线y=2x上,t=2x,
∴x=t,
∴点D的横坐标为t;
(2)由(1)知,k=2,
∴反比例函数的解析式为y=,
由(1)知,CE∥x轴,
∴C(0,t),
∴点E的纵坐标为t,
∵点E在反比例函数y=的图象上,
∴x=,
∴E(,t),
∴CE=,
∵B(0,2),
∴OB=2.
∴S1=S△OBE=OB CE=×2×=
由(1)知,A(1,2),D(t,t),
∴DE=﹣t,
∵CE∥x轴,
∴S2=S△ADE=DE(yA﹣yD)=(﹣t)(2﹣t)=t2﹣t+﹣1,
∴U=S1﹣S2=﹣(t2﹣t+﹣1)=﹣t2+t+1=﹣(t﹣1)2+,
∵点C在线段OB上(不含端点),
∴0<t<2,
∴当t=1时,U最大=.
10.【解答】(1)证明:∵9(EF2﹣CF2)=OC2,OC=3CE,
∴9(EF2﹣CF2)=9EC2,
∴EF2=EC2+CF2,
∴∠ECF=90°,
∴OC⊥CF,
∴直线CF是⊙O的切线.
(2)①证明:∵∠COD=2∠DAC,∠COD=2∠BOC,
∴∠DAC=∠EOB,
∵∠DCA=∠EBO,
∴△ACD∽△OBE.
②解:∵OB=OC,OC=3EC,
∴OB:OE=3:2,
∵△ACD∽△OBE,
∴=,
∴==,
∵AD=4,
∴AC=6,
∵M是AC的中点,
∴CM=MA=3,
∵EG∥OA,
∴==,
∴CG=2,
∴MG=CM﹣CG=3﹣2=1,
即线段MG的长度为1.
11.【解答】解:(1)当a=,b=c=﹣2时,Δ=b2﹣4ac=(﹣2)2﹣4××(﹣2)=8;
(2)①设ax2+bx+c=0,则x1+x2=﹣,x1x2=,
则+x1=﹣x2=c,即x2=﹣c=OC,x1=÷x2=﹣,
∵OB=x2=CO,∠ACO=∠ABD,∠COA=∠BOD=90°,
∴△AOC≌△DOB(ASA);
②∵∠OCA=∠CAF+∠CFA,∠ACO=∠CAF+∠CBD,
∴∠CBD=∠AFO,
∵OB=OC,故∠OCB=45°,
∵CD=OC﹣OD=OC﹣OA=﹣c﹣,
则DE=CD=﹣(c+)=CE,
则BE=BC﹣CE=OB﹣CE=﹣c+(﹣c+),
则tan∠CBD===,
而tan∠AFO====tan∠CBD=,
解得ca=﹣2或ca=1,
又∵抛物线开口向上,与y轴交于负半轴,
∴a>0,c<0,
∴ac<0,即ca=1(舍去),
而==﹣ac=2,
故的值为2.
12.【解答】(1)证明:∵∠BAC=45°,
∴∠BOD=2∠BAC=90°,
∵OD∥BC,
∴∠OBC=180°﹣∠BOD=90°,
∴OB⊥BC,
又OB是⊙O的半径,
∴直线BC是⊙O的切线;
(2)①证明:由(1)知∠BOD=90°,
∵OB=OD,
∴△BOD是等腰直角三角形,
∴∠BDE=45°=∠BAD,
∵∠DBE=∠ABD,
∴△ABD∽△DBE;
②解:由①知:△ABD∽△DBE,
∴=,
∴BD2=AB BE,
∵AB BE=6,
∴BD2=6,
∴BD=,
∵△BOD是等腰直角三角形,
∴OB=BD sin∠BDO=×=,
∴⊙O的半径的长度是.
13.【解答】解:(1)当a=1,b=3时,y=x2+3x+c,
把x=1,y=1代入得,
1=1+3+c,
∴c=﹣3;
(2)①方法(一)由ax2+bx+c=0得,
x1=,x2=,
∴AB=x2﹣x1=,
∵抛物线的顶点坐标为:(﹣,),
∴AE=,OM=,
∵∠BAE=90°,
∴tan∠ABE==,
∴=,
∴b2﹣4ac=9;
(方法二)由ax2+bx+c=0得,
∵x1+x2=,x1x2=,
∴|x1﹣x2|===,
下面过程相同;
②∵b2﹣4ac=9,
∴x2=,
∵OP∥MN,
∴,
∴:=2,
∴b=2,
∴22﹣4ac=9,
∴c=﹣,
∴T=c=﹣=﹣=(﹣2)2﹣4,
∴当=2时,T最小=﹣4,
即a=时,T最小=﹣4.
14.【解答】解:(1)过点A作x轴的垂线,交MN于点E,交OB于点F,
由题意得:OQ=2t,OP=3t,PB=6﹣3t,
∵O(0,0),A(3,4),B(6,0),
∴OF=FB=3,AF=4,OA=AB=,
∵MN∥OB,
∴∠OQM=∠OFA,∠OMQ=∠AOF,
∴△OQM∽△AFO,
∴,
∴,
∴QM=,
∴点M的坐标是().
(2)∵MN∥OB,
∴四边形QEFO是矩形,
∴QE=OF,
∴ME=OF﹣QM=3﹣,
∵OA=AB,
∴ME=NE,
∴MN=2ME=6﹣3t,
∴S四边形MNBP=S△MNP+S△BNP
=MN OQ+ BP OQ

=﹣6t2+12t
=﹣6(t﹣1)2+6,
∵点P到达点B时,P、Q同时停止,
∴0<t<2,
∴t=1时,四边形MNBP的最大面积为6,四边形MNBP面积不存在最小值.
(3)∵MN=6﹣3t,BP=6﹣3t,
∴MN=BP,
∵MN∥BP,
∴四边形MNBP是平行四边形,
∴平分四边形MNBP面积的直线经过四边形的中心,即MB的中点,
设中点为H(x,y),
∵M(),B(6,0),
∴x==,
y=.
∴x=,
化简得:y=,
∴直线l的解析式为:y=.
(4)①当t=0时,点M和点P均在点O处,∠BPN=∠OAP=0°,
此时点N在点B处,
∴点N到OA的距离为△OAB边OA上的高,记为h,
∵S△OAB=OB AF=OA h,
∴×6×4=×5h,
∴点N到OA的距离为:h=;
②当0<t<2时,
∵OQ=2t,QM=t,
∴OM=t,
∵MN∥OB,
∴,
∴OM=BN=t,
∵OA=AB,
∴∠AOB=∠PBN,
又∵∠OAP=∠BPN,
∴△AOP∽△PBN,
∴,
∴,
解得:t1=,t2=0(舍去).
∵MN=6﹣3t,AE=AF﹣OQ,ME=3﹣,
∴MN=6﹣3×,
AE=,
ME=,
∴AM=.
设点N到OA的距离为h,
∵S△AMN=MN AE=AM h,
∴,
解得:h=;
③当t=2时,不符合题意;
综上所述:点N到OA的距离为或.
15.【解答】解:(1)由题意得:x=,解得x=±2,
当x=±2时,y==±2,
故“雁点”坐标为(2,2)或(﹣2,﹣2);
(2)①∵“雁点”的横坐标与纵坐标相等,
故“雁点”的函数表达式为y=x,
∵抛物线y=ax2+5x+c上有且只有一个“雁点”E,
则ax2+5x+c=x,
则△=16﹣4ac=0,即ac=4,
∵a>1,
故0<c<4;
∵M、N的存在,
则△=25﹣4ac>0,
而a>1,
则c<,
综上所述,c的取值范围为0<c<4;
②∵ac=4,则ax2+5x+c=0为ax2+5x+=0,
解得x=﹣或﹣,即点M的坐标为(﹣,0),
由ax2+5x+c=x,ac=4,
解得x=﹣,即点E的坐标为(﹣,﹣),
过点E作EH⊥x轴于点H,
则HE=,MH=xE﹣xM=﹣﹣(﹣)==HE,
故∠EMN的度数为45°;
(3)存在点P,使点C恰好为“雁点”,理由:当点C在PB的下方时,
由题意知,点C在直线y=x上,故设点C的坐标为(t,t),
过点P作x轴的平行线交过点C与y轴的平行线于点M,交过点B与y轴的平行线于点N,
设点P的坐标为(m,﹣m2+2m+3),
则BN=﹣m2+2m+3,PN=3﹣m,PM=m﹣t,CM=﹣m2+2m+3﹣t,
∵∠NPB+∠MPC=90°,∠MCP+∠CPM=90°,
∴∠NPB=∠PCM,
∵∠CMP=∠PNB=90°,PC=PB,
∴△CMP≌△PNB(AAS),
∴PM=BN,CM=PN,
即m﹣t=|﹣m2+2m+3|,﹣m2+2m+3﹣t=|3﹣m|,
解得m=1+或1﹣,
当点C在PB的上方时,过点P作PK⊥OB于K,CH⊥KP交KP的延长线于H.
同法可证,△CHP≌△PKB,可得CH=PK,HP=BK,
t﹣m=﹣m2+2m+3,t﹣(﹣m2+2m+3)=3﹣m,
∴m=,n=,
∴P(,),
故点P的坐标为(,)或(1+,)或(,).
16.【解答】解:(1)当x=0时,y=﹣2,
∴C(0,2),
当y=0时,x2﹣x﹣2=0,
(x﹣2)(x+1)=0,
∴x1=2,x2=﹣1,
∴A(﹣1,0),B(2,0),
设图象W的解析式为:y=a(x+1)(x﹣2),
把C(0,2)代入得:﹣2a=2,
∴a=﹣1,
∴y=﹣(x+1)(x﹣2)=﹣x2+x+2,
∴图象W位于线段AB上方部分对应的函数关系式为:y=﹣x2+x+2(﹣1<x<2);
(2)由图象得直线y=﹣x+b与图象W有三个交点时,存在两种情况:
①当直线y=﹣x+b过点C时,与图象W有三个交点,此时b=2;
②当直线y=﹣x+b与图象W位于线段AB上方部分对应的函数图象相切时,如图1,
﹣x+b=﹣x2+x+2,
x2﹣2x+b﹣2=0,
Δ=(﹣2)2﹣4×1×(b﹣2)=0,
∴b=3,
综上,b的值是2或3;
(3)∵OB=OC=2,∠BOC=90°,
∴△BOC是等腰直角三角形,
如图2,CN∥OB,△CNM∽△BOC,
∵PN∥y轴,
∴P(1,0);
如图3,CN∥OB,△CNM∽△BOC,
当y=2时,x2﹣x﹣2=2,
x2﹣x﹣4=0,
∴x1=,x2=,
∴P(,0);
如图4,当∠MCN=90°时,△OBC∽△CMN,
∴CN的解析式为:y=x+2,
∴x+2=x2﹣x﹣2,
∴x1=1+,x2=1﹣(舍),
∴P(1+,0),
综上,点P的坐标为(1,0)或(,0)或(1+,0).
17.【解答】解:(1)M与B重合时,如图1,
∵PQ⊥AB,
∴∠PQA=90°,
∴PA=AB=2,
∴t=2;
(2)①当0≤t≤2时,
∵AM=2t,
∴BM=4﹣2t,
∵△APQ≌△BMF,
∴AP=BM,
∴t=4﹣2t,
∴t=;
②当2<t≤4时,
∵AM=2t,
∴BM=2t﹣4,
∵△APQ≌△BMF,
∴AP=BM,
∴t=2t﹣4,
∴t=4;
综上所述,t的值为4或;
(3)①0≤t≤2时,如图2,
在Rt△APQ中,PQ=t,
∴MQ=t,
∴S=t=;
②当2<t≤4时,如图3,
∵BF=t﹣2,MF=(t﹣2),
∴S△BFM=BF MF=,
∴S=S△PQM﹣S△BFM=﹣;
∴S=;
(4)连接AE,如图4,
∵△PQE为等边三角形,
∴PE=t,
在Rt△APE中,tan∠PAE=,
∴∠PAE为定值,
∴点E的运动轨迹为直线,
∵AP=t,
∴AE===t,
当t=2时,AE=,
当t=4时,AE=2,
∴E点运动路径长为2﹣=.
18.【解答】(1)证明:如图1,
由旋转得:AH=AG,∠HAG=90°,
∵∠BAC=90°,
∴∠BAH=∠CAG,
∵AB=AC,
∴△ABH≌△ACG(SAS);
(2)①证明:如图2,在等腰直角三角形ABC中,∠BAC=90°,
∴∠ABC=∠ACB=45°,
∵点E,F分别为AB,AC的中点,
∴EF是△ABC的中位线,
∴EF∥BC,AE=AB,AF=AC,
∴AE=AF,∠AEF=∠ABC=45°,∠AFE=∠ACB=45°,
∵∠EAH=∠FAG,AH=AG,
∴△AEH≌△AFG(SAS),
∴∠AFG=∠AEH=45°,
∴∠HFG=45°+45°=90°;
②分两种情况:
i)如图3,AQ=QG时,
∵AQ=QG,
∴∠QAG=∠AGQ,
∵∠HAG=∠HAQ+∠QAG=∠AHG+∠AGH=90°,
∴∠QAH=∠AHQ,
∴AQ=QH=QG,
∵AH=AG,
∴AQ⊥GH,
∵∠AFG=∠AFH=45°,
∴∠FGQ=∠FHQ=45°,
∴∠HFG=∠AGF=∠AHF=90°,
∴四边形AHFG是正方形,
∵AC=4,
∴AF=2,
∴FG=EH=,
∴当EH的长度为时,△AQG为等腰三角形;
ii)如图4,当AG=QG时,∠GAQ=∠AQG,
∵∠AEH=∠AGQ=45°,∠EAH=∠GAQ,
∴∠AHE=∠AQG=∠EAH,
∴EH=AE=2,
∴当EH的长度为2时,△AQG为等腰三角形;
综上,当EH的长度为或2时,△AQG为等腰三角形.
19.【解答】解:(1)由题意得抛物线的顶点坐标为(﹣1,4),
∴抛物线H:y=a(x+1)2+4,
将A(﹣3,0)代入,得:a(﹣3+1)2+4=0,
解得:a=﹣1,
∴抛物线H的表达式为y=﹣(x+1)2+4;
(2)如图1,由(1)知:y=﹣x2﹣2x+3,
令x=0,得y=3,
∴C(0,3),
设直线AC的解析式为y=mx+n,
∵A(﹣3,0),C(0,3),
∴,
解得:,
∴直线AC的解析式为y=x+3,
设P(m,﹣m2﹣2m+3),则E(m,m+3),
∴PE=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m=﹣(m+)2+,
∵﹣1<0,
∴当m=﹣时,PE有最大值,
∵OA=OC=3,∠AOC=90°,
∴△AOC是等腰直角三角形,
∴∠ACO=45°,
∵PD⊥AB,
∴∠ADP=90°,
∴∠ADP=∠AOC,
∴PD∥OC,
∴∠PEF=∠ACO=45°,
∵PF⊥AC,
∴△PEF是等腰直角三角形,
∴PF=EF=PE,
∴S△PEF=PF EF=PE2,
∴当m=﹣时,S△PEF最大值=×()2=;
(3)①当AC为平行四边形的边时,则有PQ∥AC,且PQ=AC,
如图2,过点P作对称轴的垂线,垂足为G,设AC交对称轴于点H,
则∠AHG=∠ACO=∠PQG,
在△PQG和△ACO中,

∴△PQG≌△ACO(AAS),
∴PG=AO=3,
∴点P到对称轴的距离为3,
又∵y=﹣(x+1)2+4,
∴抛物线对称轴为直线x=﹣1,
设点P(x,y),则|x+1|=3,
解得:x=2或x=﹣4,
当x=2时,y=﹣5,
当x=﹣4时,y=﹣5,
∴点P坐标为(2,﹣5)或(﹣4,﹣5);
②当AC为平行四边形的对角线时,
如图3,设AC的中点为M,
∵A(﹣3,0),C(0,3),
∴M(﹣,),
∵点Q在对称轴上,
∴点Q的横坐标为﹣1,设点P的横坐标为x,
根据中点公式得:x+(﹣1)=2×(﹣)=﹣3,
∴x=﹣2,此时y=3,
∴P(﹣2,3);
综上所述,点P的坐标为(2,﹣5)或(﹣4,﹣5)或(﹣2,3).
20.【解答】解:(1)①从图1中,当a<2时,△ADE是等腰直角三角形,
∴DE=AD=1.5,
从图2,当h=1时,横坐标a对应1或3,
故答案为:1.5;1或3;
②如图,
③当自变量a变化时,h随之变化,当a确定时,h有唯一一个值与之对应,所以h是a的函数;
当自变量h确定时,a有两个值与之对应,所以a不是h的函数,
故答案为A;
(2)①当0≤a≤2时,DE=AD=a,
S△ADE=AD DE=;
当2<a≤4时,DE=AB﹣AD=4﹣a,
∴S==,
∴S=;
②当S=时,当0≤a≤2时,
=,
∴a1=1,a2=﹣1(舍去),
当2<≤4时,
=,
∴a3=3,a4=5(舍去),
综上所述:当S=时,a=1或3.
21.【解答】(1)证明:∵四边形ABCD是矩形,
∴∠A=∠D=90°,
∴∠CED+∠DCE=90°,
∵EF⊥CE,
∴∠CED+∠AEF=90°,
∴∠DCE=∠AEF,
∴△AEF∽△DCE;
(2)解:①连接AM,如图2,
∵BG⊥CF,
∴△BGC是直角三角形,
∵点M是BC的中点,
∴MB=CM=GM=,
∴点G在以点M为圆心,3为半径的圆上,
当A,G,M三点不共线时,由三角形两边之和大于第三边得:AG+GM>AM,
当A,G,M三点共线时,AG+GM=AM,
此时,AG+GM取得最小值,
在Rt△ABM中,AM===5,
∴AG+GM的最小值为5.
②方法一:
如图3,过点M作MN∥AB交FC于点N,
∴△CMN∽△CBF,
∴,
设AF=x,则BF=4﹣x,
∴MN=BF=(4﹣x),
∵MN∥AB,
∴△AFG∽△MNG,
∴,
由(2)可知AG+GM的最小值为5,
即AM=5,
又∵GM=3,
∴AG=2,
∴,
解得x=1,
即AF=1,
由(1)得,
设DE=y,则AE=6﹣y,
∴,
解得:y=3+或y=3﹣,
∵0<6,0<3﹣<6,
∴DE=3+或DE=3﹣.
方法二:
如图4,过点G作GH∥AB交BC于点H,
∴△MHG∽△MBA,
∴,
由(2)可知AG+MG的最小值为5,
即AM=5,
又∵GM=3,
∴,
∴GH=,MH=,
由GH∥AB得△CHG∽△CBF,
∴,
即,
解得FB=3,
∴AF=AB﹣FB=1.
由(1)得,
设DE=y,则AE=6﹣y,
∴,
解得:y=3+或y=3﹣,
∵0<6,0<3﹣<6,
∴DE=3+或DE=3﹣.
22.【解答】解:(1)将A(﹣1,0)、B(3,0)代入y=x2+bx+c得,

解得,
∴抛物线的解析式为y=x2﹣2x﹣3;
(2)①由(1)可知,C(0,﹣3),
设直线BC的解析式为y=kx+m,
将C(0,﹣3),B(3,0)代入得,

∴,
∴直线BC的解析式为y=x﹣3,
∴直线MN的解析式为y=x,
∵抛物线的对称轴为x=﹣=﹣=1,
把x=1代入y=x,得y=1,
∴D(1,1),
方法一:
设直线CD的解析式为y=k1x+b1,
将C(0,﹣3),D(1,1)代 入得,

解得,
∴直线CD的解析式为y=4x﹣3,
当y=0时,4x﹣3=0,
∴x=,
∴E(,0),
∴OE=.
方法二:
由勾股定理得OD==,BC==3,
∵BC∥MN,
∴△DEO∽△CEB,
∴,
设OE=x,则BE=3﹣x,
∴,
解得x=,
∴OE=.
②存在点F,使得以B,C,D,F为顶点的四边形是平行四边形.
理由如下:
(Ⅰ)若平行四边形以BC为边时,
由BC∥FD可知,FD在直线MN上,
∴点F是直线MN与对称轴l的交点,即F(1,1),
由点D在直线MN上,设D(t,t),
如图,若四边形BCFD是平行四边形,则DF=BC,
过点D作y轴的垂线交对称轴l于点G,则G(1,t),
∵BC∥MN,
∴∠OBC=∠DOB,
∵GD∥x轴,
∴∠GDF=∠DOB,
∴∠OBC=∠GDF,
又∵∠BOC=∠DGF=90°,
∴△DGF≌△BOC(AAS),
∴GD=OB,GF=OC,
∵GD=t﹣1,OB=3,
∴t﹣1=3,
∴t=4,
∴D(4,4),
如图,若四边形BCDF是平行四边形,则DF=CB,
同理可证△DKF≌△COB(AAS),
∴KD=OC,
∵KD=1﹣t,OC=3,
∴1﹣t=3,
∴t=﹣2,
∴D(﹣2,﹣2);
(Ⅱ)若平行四边形以BC为对角线时,
由于D在BC的上方,则点F一定在BC的下方,
如图,四边形BFCD为平行四边形,
设D(t,t),F(1,n),
同理可证△DHC≌△BPF(AAS),
∴DH=BP,HC=PF,
∵DH=t,BP=3﹣1=2,HC=t﹣(﹣3)=t+3,PF=0﹣n=﹣n,
∴,
∴,
∴D(2,2),F(1,﹣5),
综上所述,存在点F,使得以B,C,D,F为顶点的四边形是平行四边形.
当点F的坐标为(1,1)时,点D的坐标为(4,4)或(﹣2,﹣2);
当点F的坐标为(1,﹣5)时,点D的坐标为(2,2).
23.【解答】证明:(1)连接OC,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠BOC=2∠OAC,
∵AC平分∠BAE,
∴∠BAE=2∠OAC,
∴∠BAE=∠BOC,
∴CO∥AD,
∵CD⊥AE,
∴∠D=90°,
∴∠DCO=90°,
∴OC⊥CD,
∴CD是⊙O的切线.
(2)连接BC,
∵AC平分∠BAE,
∴∠BAC=∠CAD,
∵AB是⊙O的直径,
∴∠BCA=90°,
∵∠D=90°,
∴∠D=∠BCA,
∴△BAC∽△CAD,
∴,
∴AC2=AB AD,
∵AB=2AO,
∴AC2=2AD AO.
(3)∵∠CAB、∠CBM的角平分线交于点Q,
∴∠QAM=∠CAB,∠QBM=∠CBM,
∵∠QBM是△QAB的一个外角,∠CBM是△ABC的一个外角,
∴∠Q=∠QBM﹣∠QAM=(∠CBM﹣∠CAM),
∵∠ACB=∠CBM﹣∠CAM,
∴∠Q=∠ACB,
∵∠ACB=90°,
∴∠Q=45°,
同理可证:∠P===45°,
∴∠P=∠Q.
24.【解答】解:(1)∵二次函数的图象经过点(0,4),
∴c=4;
∵对称轴为直线:x=﹣=1,
∴b=﹣2,
∴此二次函数的表达式为:y1=x2﹣2x+4.
(2)当b2﹣c=0时,b2=c,此时函数的表达式为:y1=x2+bx+b2,
根据题意可知,需要分三种情况:
①当b<﹣,即b<0时,二次函数的最小值在x=b处取到;
∴b2+b2+b2=21,解得b1=﹣,b2=(舍去);
②b﹣3>﹣,即b>2时,二次函数的最小值在x=b﹣3处取到;
∴(b﹣3)2+b(b﹣3)+b2=21,解得b3=4,b4=﹣1(舍去);
③b﹣3≤﹣≤b,即0≤b≤2时,二次函数的最小值在x=﹣处取到;
∴(﹣)2+b (﹣)+b2=21,解得b=±2(舍去).
综上所述,b的值为﹣或4.
(3)由(1)知,二次函数的表达式为:y1=x2﹣2x+4,
设函数y3=y2﹣y1=x2+3x+m﹣4,
对称轴为直线x=﹣<0,
∴当0≤x≤1时,y3随x的增大而增大,
∴当x=0时,y3即y2﹣y1有最小值m﹣4,
∴m﹣4≥0,
∴m≥4,即m的最小值为4.
25.【解答】(1)证明:∵BM是⊙O的切线,
∴AB⊥BM,
∴∠ABC+∠MBC=90°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠ABC+∠BAC=90°,
∴∠MBC=∠BAC;
(2)证明:∵AO=OC,
∴∠BAC=∠ACE,
∵∠MBC=∠ACD,∠MBC=∠BAC,
∴∠ACD=∠ACE,
∵CE是⊙O的直径,
∴∠EAC=∠DAC=90°,
∵AC=AC,
∴△AEC≌△ADC(ASA),
∴AE=AD;
(3)解:∵∠BAC=∠ACD,
∴AB∥DC,
∴,
∴,
∴,
∵AO∥DC,
∴△AOF∽△CDF,
∴,
∵△OFC的面积S1=4,
∴S△AOF=2,S△ADF=S△OCF=4,S△CDF=8,
∴S四边形AOCD=S△AOF+S△ADF+S△CDF+S△COF=2+4+8+4=18.
26.【解答】解:(1)根据题意得,
解得,
∴y=x2+2x﹣7=(x+1)2﹣8,
∴该函数的表达式为y=x2+2x﹣7或y=(x+1)2﹣8,
当x=1时,y的最小值为0;
(2)根据题意得y=x2﹣2x+m+1,
∵函数的图象与x轴有交点,
∴Δ=b2﹣4ac=(﹣2)2﹣4(m+1)≥0,
解得:m≤0;
(3)根据题意得到y=ax2﹣2x+3的图象如图所示,
∵抛物线y=ax2﹣2x+3经过(0,3),
∴如图1,
,即,
∴a的值﹣1<a≤﹣;
如图2,如图3不成立;
如图4,
,即
∴a的值不存在;
如图5,
,即,
∴a的值为;
如图6,
当a=0时,函数解析式为y=﹣2x+3,函数与x轴的交点为(1.5,0),
∴a=0成立;
综上所述,a的值﹣1<a≤0或a=.
27.【解答】证明:(1)∵△ABC是等腰直角三角形,
∴AB=AC,
∴∠B=∠ACB=45°,
∵CD⊥BC,
∴∠BCD=90°,
∴∠ACD=∠BCD﹣∠ACB=45°=∠B,
在△ABE和△ACD中,

∴△ABE≌△ACD(SAS);
(2)由(1)知,△ABE≌△ACD,
∴AE=AD,∠BAE=∠CAD,
∵∠BAC=90°,
∴∠EAD=∠CAE+∠CAD=∠CAE+∠BAE=∠BAC=90°,
∵∠EAF=45°,
∴∠DAF=∠DAE﹣∠EAF=45°=∠EAF,
∵AF=AF,
∴△AEF≌△ADF(SAS),
∴DF=EF,
在Rt△DCF中,根据勾股定理得,DF2=CF2+CD2,
∵CD=BE,
∴EF2=CF2+BE2;
(3)在Rt△ABC中,AC=AB=,
∴BC=AB=2,
∵AH⊥BC,
∴AH=BH=CH=BC=1,
∴BE=1﹣EH,CF=1﹣FH,
由(2)知,EF2=CF2+BE2,
∵EF=EH+FH,
∴(EH+FH)2=(1﹣FH)2+(1﹣EH)2,
∴1﹣EH FH=EH+FH,
在Rt△AHE中,tanα==EH,
在Rt△AHF中,tanβ==FH,
∴右边====1,
∵α+β=45°,
∴左边=tan(α+β)=tan45°=1,
∴左边=右边,
即当α+β=45°时,tan(α+β)=成立.
28.【解答】解:(1)由二次函数y=x2+bx+c的图象与x轴相交于点A(﹣1,0)和点B(3,0),得:

解得:,
∴y=x2﹣2x﹣3,
∴b=﹣2,c=﹣3.
(2)①∵点P(m,n)在抛物线上y=x2﹣2x﹣3,
∴P(m,m2﹣2m﹣3),
∴PQ=m﹣(m2﹣2m﹣3)=﹣m2+3m+3=﹣(m﹣)2+,
∵过P作x轴的垂线交直线l:y=x于点Q,
∴Q(m,m),
设点P到直线y=x的距离为h,
∵直线y=x是一三象限的角平分线,
∴PQ=h,
∴当P点到直线l:y=x的距离最大时,PQ取得最大值,
∴当m=时,PQ有最大值,
∴当P点到直线l:y=x的距离最大时,m的值为.
②∵抛物线与y轴交于点C,
∴x=0时,y=﹣3,
∴C(0,﹣3),
∵OC∥PQ,且以点O、C、P、Q为顶点的四边形是菱形,
∴PQ=OC,
又∵OC=3,PQ=|﹣m2+3m+3|,
∴3=|﹣m2+3m+3|,
解得:m1=0,m2=3,m3=,m4=,
当m1=0时,PQ与OC重合,菱形不成立,舍去;
当m2=3时,P(3,0),Q(3,3),
此时,四边形OCPQ是平行四边形,OQ=,
∴OQ≠OC,平行四边形OCPQ不是菱形,舍去;
当m3=时,Q(,),
此时,四边形OCQP是平行四边形,OQ=,
∴CQ≠OC,平行四边形OCPQ不是菱形,舍去;
当m4=时,Q(,),
此时,四边形OCQP是平行四边形,OQ=,
∴OQ≠OC,平行四边形OCPQ不是菱形,舍去;
综上所述:不存在m,使得以点O、C、P、Q为顶点的四边形是菱形.
29.【解答】解:(1)AC是⊙O切线,理由如下:
如图,连接OD,
∵OD=OB,
∴∠ODB=∠OBD,
∵BD是△ABC的角平分线,
∴∠OBD=∠DBC,
∴∠ODB=∠DBC,
∴OD∥BC,
∴∠ODA=∠C=90°,
∵OD是⊙O的半径,且AC⊥OD,
∴AC是⊙O的切线;
(2)①在Rt△DBC中,∵BC=3,CD=,
∴BD===,
∴sin∠DBC===,
如图2,连接DE,OD,过点O作OG⊥BC于G,
∴∠ODC=∠C=∠CGO=90°,
∴四边形ODCG是矩形,
∴OG=CD=,
∵BE是⊙O的直径,
∴∠BDE=90°,
∴cos∠DBE=cos∠CBD,
∴=,
∴=,
∴BE=,
∴OB=BE=,
∴sin∠ABC===;
②∵2sin∠DBC cos∠DBC=2××=,
∴sin∠ABC=2sin∠DBC cos∠DBC;
猜想:sin2α=2sinαcosα,理由如下:
当α=30°时,sin2α=sin60°=,
2sinαcosα=2××=,
∴sin2α=2sinαcosα.
30.【解答】解:(1)当x=0时,y=﹣6,
∴C(0,﹣6),
当y=0时,x2﹣2x﹣6=0,
∴x1=6,x2=﹣2,
∴A(﹣2,0),B(6,0);
(2)方法一:如图1,
连接OP,
设点P(m,﹣2m﹣6),
∴S△POC=xP==3m,
S△BOP=|yP|=+2m+6),
∵S△BOC==18,
∴S△PBC=S四边形PBOC﹣S△BOC
=(S△POC+S△POB)﹣S△BOC
=3m+3(﹣+2m+6)﹣18
=﹣(m﹣3)2+,
∴当m=3时,S△PBC最大=;
方法二:如图2,
作PQ⊥AB于Q,交BC于点D,
∵B(6,0),C(0,﹣6),
∴直线BC的解析式为:y=x﹣6,
∴D(m,m﹣6),
∴PD=(m﹣6)﹣(﹣2m﹣6)=﹣+3m,
∴S△PBC===﹣(m﹣3)2+,
∴当m=3时,S△PBC最大=;
(3)如图3,
当 ACFE时,AE∥CF,
∵抛物线对称轴为直线:x==2,
∴F1点的坐标:(4,﹣6),
如图4,
当 ACEF时,
作FG⊥AE于G,
∴FG=OC=6,
当y=6时,x2﹣2x﹣6=6,
∴x1=2+2,x2=2﹣2,
∴F2(2+2,6),F3(2﹣2,6),
综上所述:F(4,﹣6)或(2+2,6)或(2﹣2,6).
31.【解答】解:(1)∵点(1,1)和(4,1)的纵坐标相同,
故上述两点关于抛物线对称轴对称,
故抛物线的对称轴为直线x=(1+4)=;
(2)①由题意得:,解得,
故原抛物线的表达式为y=﹣x2+5x﹣3;
由平移的性质得,平移后的抛物线表达式为y=﹣(x+2)2+5(x+2)﹣3﹣1=﹣x2+x+2;
②存在,理由:
令y=﹣x2+x+2=0,解得x=﹣1或2,令x=0,则y=2,
故点B、A的坐标分别为(﹣1,0)、(2,0),点C(0,2);
∵tan∠BCO=,
同理可得:tan∠CBO=2,
当以点O,D,E为顶点的三角形与△BOC相似时,
则tan∠DOE=2或,
设点D的坐标为(m,﹣m2+m+2),
则tan∠DOE===2或,
解得:m=﹣2(舍去)或1或(舍去)或,
故m=1或.
32.【解答】解:(1)证明:∵PB'⊥AC,∠CAB=90°,
∴PB'∥AB.
∴∠B'PA=∠BAP,
又由折叠可知∠BAP=∠B'AP,
∴∠B'PA=∠B'AP.
故PB′=AB′.
(2)设AB=AC=a,AC、PB'交于点D,如答图1所示,
则△ABC为等腰直角三角形,
∴BC=,PC=,PB=,
由折叠可知,∠PB'A=∠B=45°,
又∠ACB=45°,
∴∠PB'A=∠ACB,
又∠CDP=∠B'DA,
∴△CDP∽△B'DA.
∴==.①
设B'D=b,则CD=b.
∴AD=AC﹣CD=a﹣b,
PD=PB'﹣B'D=PB﹣B'D=﹣b,
由①=得:=.
解得:b=.
过点D作DE⊥AB'于点E,则△B'DE为等腰直角三角形.
∴B'E=sin45°×B'D===,
∴AE=AB'﹣B'E=AB﹣B'E=a﹣=.
又AD=AC﹣CD=a﹣b=a﹣=.
∴cos∠B'AC=cos∠EAD===.
(3)存在点P,使得CB'=AB=m.理由如下:
∵∠ACB=30°,∠CAB=90°.
∴BC=2m.
①如答图2所示,
由题意可知,点B'的运动轨迹为以A为圆心、AB为半径的半圆A.
当P为BC中点时,PC=BP=AP=AB'=m,
又∠B=60°,
∴△PAB为等边三角形.
又由折叠可得四边形ABPB'为菱形.
∴PB'∥AB,
∴PB'⊥AC.
又∵AP=AB',
则易知AC为PB'的垂直平分线.
故CB'=PC=AB=m,满足题意.
此时,==.
②当点B'落在BC上时,如答图3所示,
此时CB'=AB=m,
则PB'==,
∴PC=CB'+PB'=m+=,
∴==.
综上所述,的值为或.
33.【解答】解:在直线y=2x+2中,
当x=0时,y=2,
当y=0时,x=﹣1,
∴点A的坐标为(﹣1,0),点B的坐标为(0,2),
把点A(﹣1,0),点B(0,2),点C(3,0)代入y=ax2+bx+c,

解得,
∴抛物线的解析式为y=﹣x2+x+2;
(2)①当△AOB≌△DPC时,AO=DP,
又∵四边形OPDE为正方形,
∴DP=OP=AO=1,
此时点P的坐标为(1,0),
②当△AOB≌△CPD时,OB=DP,
又∵四边形OPDE为正方形,
∴DP=OP=OB=2,
此时点P的坐标为(2,0),
综上,点P的坐标为(1,0)或(2,0);
(3)如图,
点D′在以点P为圆心,DP为半径的圆上运动,
∴当点D′′,点P,点C三点共线时,CD′′有最小值,
由(2)可得点P的坐标为(1,0)或(2,0),且C点坐标为(3,0),
∴CD′′的最小值为1.
34.【解答】解:(1)EA平分∠DEF,理由如下:
∵AB=AC,
∴∠ABC=∠ACB,
又∵∠ACB=∠AEB,
∴∠ABC=∠AEB
∵∠ABC+∠AEC=180°,∠AEF+∠AEC=180°,
∴∠ABC=∠AEF,
∴∠AEB=∠AEF,
∴EA平分∠DEF,
(2)①由(1)知:EA平分∠DEF,
∵BD⊥AC,AF⊥CE,
∴AD=AF,
在Rt△ABD和Rt△ACF中,

∴Rt△ABD≌Rt△ACF(HL),
∴BD=CF,
②由(1)知,∠AEB=∠AEF,
∵∠AEF=∠CEG,
∴∠AEB=∠CEG,
∵∠BAE+∠BCE=180°,∠BCE+∠ECG=180°,
∴∠BAE=∠ECG,
∴△AEB∽△CEG,
∴,
∴BE CE=AE EG,
∴BD2﹣DE2=(BD+DE)(BD﹣DE)=BE(CF﹣EF)=BE CE,
∴BD2﹣DE2=AE EG,
即BD2=DE2+AE EG.
35.【解答】解:(1)①∵y=,由x2<x1且y2=y1=4时,
由y1=x12=4,
∴x1=2(负值舍),
由y2=﹣x2=4,
∴x2=﹣4,
②∵|x2|=|x1|且x2<x1.x1>0,
∴x2<0且x1=﹣x2,
∴y1=x12,y2=﹣x2=x1,
∴w=y1﹣y2=x12﹣x1=(x1﹣)2﹣,
∴当x1=时,w有最小值为﹣,
(2)如图,设直线AQ'交y轴于点M(0,b),连接QQ',
∵AQ⊥x轴,
∴AQ∥y轴,
∴∠AP'M=∠P'AQ,
∵点Q与Q'关于AP'对称,
∴AQ=AQ',AP'⊥QQ',
∴∠P'AQ=∠P'AQ',
∴∠AP'M=∠P'AQ',
∴AM=P'M,
∵点A(x1,y1)在第一象限内的函数图象上.
∴x1>0,y1=x12>0,
∴x1=,
∵AP⊥y轴,
∴P点的坐标为(0,y1),AP=x1=,
∵点P与P'关于x轴对称,
∴点P'的坐标为(0,﹣y1),
∴PM=|y1﹣b|,AM=P'M=|y1+b|,
∵在Rt△APM中,由勾股定理得:
()2+|y1﹣b|2=|y1+b|2,
化简得:y1﹣4by1=0,
∵y1>0,
∴b=,
∴直线AQ'与y轴交于一定点M,坐标为(0,).
36.【解答】解:(1)由题意可知,抛物线E:y=﹣(x﹣m)2+2m2(m<0)的顶点P的坐标为(m,2m2),
∵点P在抛物线F:y=ax2上,
∴am2=2m2,
∴a=2.
(2)∵直线x=t与抛物线E,F分别交于点A,B,
∴yA=﹣(t﹣m)2+2m2=﹣t2+2mt+m2,yB=2t2,
∴s=yA﹣yB
=﹣t2+2mt+m2﹣2t2
=﹣3t2+2mt+m2
=﹣3(t﹣m)2+m2,
∵﹣3<0,
∴当t=m时,s的最大值为m2,
∵s的最大值为4,
∴m2=4,解得m=±,
∵m<0,
∴m=﹣.
(3)存在,理由如下:
设点M的横坐标为n,则M(n,2n2),
∴Q(2n﹣m,4n2﹣2m2),
∵点Q在x轴正半轴上,
∴2n﹣m>0且4n2﹣2m2=0,
∴n=﹣m,
∴M(﹣m,m2),Q(﹣m﹣m,0).
如图,过点Q作x轴的垂线KN,分别过点P,G作x轴的平行线,与KN分别交于K,N,
∴∠K=∠N=90°,∠QPK+∠PQK=90°,
∵∠PQG=90°,
∴∠PQK+∠GQN=90°,
∴∠QPK=∠GQN,
∴△PKQ∽△QNG,
∴PK:QN=KQ:GN,即PK GN=KQ QN.
∵PK=﹣m﹣m﹣m=﹣m﹣2m,KQ=2m2,GN=﹣m﹣m,
∴(﹣m﹣2m)(﹣m﹣m)=2m2 QN
解得QN=.
∴G(0,﹣).
37.【解答】解:(1)(任意回答一个即可);
①如图1,△AFB∽△BCE,理由如下:
∵四边形ABCD是矩形,
∴DC∥AB,∠BCE=∠ABC=90°,
∴∠BEC=∠ABF,
∵AF⊥BE,
∴∠AFB=90°,
∴∠AFB=∠BCE=90°,
∴△AFB∽△BCE;
②△AFB∽△CGE,理由如下:
∵CG⊥BE,
∴∠CGE=90°,
∴∠CGE=∠AFB,
∵∠CEG=∠ABF,
∴△AFB∽△CGE;
③△AFB∽△BGC,理由如下:
∵∠ABF+∠CBG=∠CBG+∠BCG=90°,
∴∠ABF=∠BCG,
∵∠AFB=∠CGB=90°,
∴△AFB∽△BGC;
(2)∵四边形AFCC'是平行四边形,
∴AF=CC',
由(1)知:△AFB∽△BGC,
∴=,即==,
设AF=5x,BG=3x,
∴CC'=AF=5x,
∵CG=C'G,
∴CG=C'G=2.5x,
∵△AFB∽△BCE∽△BGC,
∴=,即=,
∴CE=7.5;
(3)分两种情况:
①当C'F=BC'时,如图2,
∵C'G⊥BE,
∴BG=GF,
∵CG=C'G,
∴四边形BCFC'是菱形,
∴CF=CB=9,
由(2)知:AF=5x,BG=3x,
∴BF=6x,
∵△AFB∽△BCE,
∴=,即=,
∴=,
∴CE=;
②当C'F=BF时,如图3,
由(1)知:△AFB∽△BGC,
∴===,
设BF=5a,CG=3a,
∴C'F=5a,
∵CG=C'G,BE⊥CC',
∴CF=C'F=5a,
∴FG=4a,
∵tan∠CBE==,
∴=,
∴CE=3;
综上,当CE的长为或3时,以C′,F,B为顶点的三角形是以C′F为腰的等腰三角形.
38.【解答】解:(1)过点D作x轴垂线交x轴于点H,如图所示:
由题意得∠EOB=∠DHC=90°,
∵AB∥CD,
∴∠EBO=∠DCH,
∴△EBO∽△DCH,
∴,
∵B(﹣2,0)、C(8,0)、D(13,10),
∴BO=2,CH=13﹣8=5,DH=10,
∴,
解得:EO=4,
∴点E坐标为(0,4),
设过B、E、C三点的抛物线的解析式为:y=a(x+2)(x﹣8),将E点代入得:
4=a×2×(﹣8),
解得:a=﹣,
∴过B、E、C三点的抛物线的解析式为:y=﹣(x+2)(x﹣8)=﹣x2+x+4;
(2)抛物线的顶点在直线EF上,理由如下:
由(1)可知该抛物线对称轴为直线x=﹣=﹣=3,
当x=3时,y=,
∴该抛物线的顶点坐标为(3,),
又∵F是AD的中点,
∴F(8,10),
设直线EF的解析式为:y=kx+b,将E(0,4),F(8,10)代入得,
解得:,
∴直线EF解析式为:y=,
把x=3代入直线EF解析式中得:y=,
故抛物线的顶点在直线EF上;
(3)由(1)(2)可知:A(3,10),
设直线AB的解析式为:y=k'x+b',将B(﹣2,0),A(3,10)代入得:
,解得:,
∴直线AB的解析式为:y=2x+4,
∵FQ∥AB,
故可设:直线FQ的解析式为:y=2x+b1,将F(8,10)代入得:
b1=﹣6,
∴直线FQ的解析式为:y=2x﹣6,
当x=0时,y=﹣6,
∴Q点坐标为(0,﹣6),
设M(0,m),直线BM的解析式为:y=k2x+b2,将M、B点代入得:
,解得:,
∴直线BM的解析式为:y=,
∵点P为直线BM与抛物线的交点,
∴联立方程组有:,
化简得:(x+2)(x﹣8+2m)=0,
解得:x1=﹣2(舍去),x2=8﹣2m,
∴点P的横坐标为:8﹣2m,
则此时,S△PBQ=MQ×(|xP|+|xB|)==﹣(m+)2+,
∵a=﹣1<0,
∴当m=﹣时,S取得最大值,
∴点P横坐标为8﹣2×(﹣)=9,
将x=9代入抛物线解析式中y=﹣,
综上所述,当△PBQ的面积最大时,P的坐标为(9,﹣).
39.【解答】证明:(1)∵AT∥BC,
∴∠ATD=∠BCD,
∵点D是AN的中点,
∴AD=DN,
在△ATD和△NCD中,

∴△ATD≌△NCD(AAS),
∴CN=AT,TD=DC,
∵AT=BN,
∴BN=CN;
(2)①∵AT=BN,AT∥BN,
∴四边形ATBN是平行四边形,
∵AB=AC,BN=CN,
∴AN⊥BC,
∴平行四边形ATBN是矩形,
∴∠TAN=90°,
∵点M,点N关于AC对称,
∴CN=MC,∠ACN=∠ACM,
∴AT=CM,
∵OA=OC,
∴∠OAC=∠OCA,
∵∠OAC+∠ACN=90°,
∴∠OCA+∠ACM=90°=∠OCM,
∴∠OCM=∠TAN,
又∵AT=CM,OA=OC,
∴△TAO≌△MCO(SAS),
∴OT=OM,∠TOA=∠COM,
∴∠TOM=∠AOC,,
∴△TOM∽△AOC;
②如图2,将CM绕点M顺时针旋转,使点C落在点E上,连接AM,TE,
∴EM=CM=AT,
∴∠MEC=∠MCE,
∵∠CAN+∠ACN=90°,
∴∠CAN+∠ACM=90°,
∴∠TAN+∠NAC+∠ACM=180°,
∴∠TAC+∠ACM=180°,
又∵∠AEM+∠CEM=180°,
∴∠TAC=∠AEM,
∴AT∥EM,
∴四边形ATEM是平行四边形,
∴TP=PM,
又∵TD=DC,
∴PD∥CM,PD=CM.
40.【解答】解:(1)∵抛物线过点O(0,0),A(5,5),且它的对称轴为x=2,
∴抛物线与x轴的另一个交点坐标为(4,0),
设抛物线解析式为y=ax(x﹣4),把A(5,5)代入,得5a=5,
解得:a=1,
∴y=x(x﹣4)=x2﹣4x,
故此抛物线的解析式为y=x2﹣4x;
(2)∵点B是抛物线对称轴上的一点,且点B在第一象限,
∴设B(2,m)(m>0),
设直线OA的解析式为y=kx,
则5k=5,
解得:k=1,
∴直线OA的解析式为y=x,
设直线OA与抛物线对称轴交于点H,则H(2,2),
∴BH=m﹣2,
∵S△OAB=15,
∴×(m﹣2)×5=15,
解得:t=8,
∴点B的坐标为(2,8);
(3)设直线AB的解析式为y=cx+d,把A(5,5),B(2,8)代入得:,
解得:,
∴直线AB的解析式为y=﹣x+10,
当PA﹣PB的值最大时,A、B、P在同一条直线上,
∵P是抛物线上的动点,
∴,
解得:,(舍去),
∴P(﹣2,12),
此时,PA﹣PB=AB==3.
41.【解答】(1)证明:连接CG,过点G作GJ⊥CD于点J.
∵四边形ABCD是矩形,
∴∠BAD=∠ABC=90°,AD=BC,
∵AF平分∠BAD,
∴∠BAF=∠DAF=45°,
∴∠AFB=∠BAF=45°,
∴BA=BF,
∵BE=CF,
∴AE=AB+BE=BF+CF=BC=AD,
∵AG=AG,
∴△EAG≌△DAG(SAS),
∴EG=DG,∠AEG=∠ADG,
∵AD∥FC,AG=GF,
∴DJ=JC,
∵GJ⊥CD,
∴GD=GC,
∴∠GDC=∠GCD,
∵∠ADC=∠BCD=90°,
∴∠ADG=∠GCO,
∴∠OEB=∠OCG,
∵∠BOE=∠GOC,
∴△OBE∽△OGC,
∴=,
∵GC=GD,BE=CF,
∴BO GD=GO FC;
(2)解:过点D作DT⊥BC于点T,连接GT.
∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠DAG=∠AFB,
∵AF平分∠DAB,
∴∠DAG=∠BAF,
∴BAF=∠AFB,
∴AB=BF,
∴AE=AB+BE=BF+CF=BC=AD,
∵AG=AG,
∴△EAG≌△DAG(SAS),
∴∠AEG=∠ADG,
∵AD∥FT,AG=GF,
∴DJ=JT,
∵GJ⊥DT,
∴GD=GT,
∴∠GDT=∠GTD,
∵∠ADT=∠BTD=90°,
∴∠ADG=∠GTO,
∴∠OEB=∠OTG,
∵∠BOE=∠GOT,
∴△OBE∽△OGT,
∴=,
∵GT=GD,BE=CF,
∴BO GD=GO FC.
解法二:延长EG交AD于点M,在DM上取一点N,使得GN=GM.
证明△OGF≌△MGA,推出GM=OG=GN,∠AMG=∠GOF,
再证明△BOE∽△GDN,可得结论.
42.【解答】解:(1)在Rt△ABC中,∠ACB=90°,点D为AB的中点,
∴AD=CD=BD,
∵∠A=60°,
∴∠B=30°,△ACD是等边三角形,
∴∠DCB=30°,
∵∠CDE=α=90°,
∴tan∠CGD=tan60°==,
∴=.
∵线段CD绕点D顺时针旋转α(60°<α<120°)得到线段ED,
∴ED=CD=BD,
故答案为:ED=BD;.
(2)①四边形CDEF是正方形,理由如下,
∵DM平分∠CDE,∠CDE=90°,
∴∠CDM=∠EDM=45°,
∵CF∥DE,
∴∠CFD=∠EDM=45°,
∴∠CFD=∠EDM=∠CDM,
∴CF=CD=ED,
∴四边形CDEF是菱形,
∵∠CDE=90°,
∴菱形CDEF是正方形.
②由(1)可知,∠ADC=60°,∠CGD=60°,BD=DE,
∴∠BDE=30°,∠EGB=60°,
∴∠DBE=∠DEB=75°,
∴∠EBG=45°,
∵∠GDB=180°﹣∠ADE=30°,∠ABC=30°,
∴∠GDB=∠ABC,
∴DG=BG,
由①知∠CFD=∠CDF=45°,∠DCF=90°,
∴∠FCH=60°,
∴∠EGB=∠FCH,∠EBG=∠CFD,
∴△BEG∽△FHC,
∴=,
∵DG=BG,CD=CF,
∴===.
(3)如图3,过点D作DN⊥BC于点N,
∴AC∥DN,
∴∠ACD=∠CDN,
∵△ACD是等边三角形,AC=2,
∴FC=CD=AC=2,∠CDN=∠ACD=60°,
∴∠NDG=α﹣60°,DN=1,
∴tan∠NDG=tan(α﹣60°)==m,
∴NG=m,
在Rt△ABC中,∠ACB=90°,∠A=60°,AC=2,
∴AB=4,BC=2,
∴BN=CN=,
∴BG=﹣m,
∵∠ADC=60°,∠CDG=α,
∴∠BDE=120°﹣α,
∴∠BEG=30°+,
∴∠EBG=,
∴∠BGE=150°﹣α,
∵DM平分∠CDE,∠CDE=α,
∴∠CDM=∠EDM=,
∵CF∥DE,
∴∠CFD=∠EDM=,∠DCF+∠CDE=180°,
∴∠DCF=180°﹣α,
∴∠FCG=150°﹣α,
∴∠EGB=∠FCG,∠EBG=∠CFD,
∴△BEG∽△FHC,
∴==.
43.【解答】解:(1)设抛物线的表达式为y=a(x﹣x1)(x﹣x2),
即y=a(x+1)(x﹣4)=a(x2﹣3x﹣4)=ax2﹣3ax﹣4a,
即﹣4a=2,解得a=﹣,
故抛物线的表达式为y=﹣x2+x+2;
(2)将点A的坐标代入直线l的表达式得:0=﹣k+3,解得k=3,
故直线l的表达式为y=3x+3,
设点Q的坐标为(x,﹣x2+x+2),则点P的坐标为(x,3x+3),
由题意得,点Q、M关于抛物线对称轴对称,而抛物线的对称轴为直线x=,
故点M的横坐标为3﹣x,则QM=3﹣x﹣x=3﹣2x,
设矩形周长为C,则C=2(PQ+QM)=2[3﹣2x+3x+3﹣(﹣x2+x+2)]=x2﹣x+8,
∵1>0,故C有最小值,
当x=时,矩形周长最小值为;
(3)当x=时,y=﹣x2+x+2=,即点Q的坐标为(,),
由抛物线的表达式知,点D的坐标为(,),
过点D作DK⊥QM于点K,
则DK=yD﹣yQ=﹣=,
同理可得,QK=1,
则tan∠DQM=,
∵∠CBF=∠DQM,
故tan∠CBF=tan∠DQM=,
在△BOC中,tan∠CBO==,
故BF和BO重合,
故点F和点A重合,
即点F的坐标为(﹣1,0),
当点F在直线BC的上方时,∵AC=,BC=2,AB=5,
∴AB2=AC2+BC2,
∴∠ACB=90°,
则点A关于BC的对称点A′(1,4),
∴直线BF的解析式为y=﹣x+,
由,解得或,
∴F(,),
综上所述,满足条件的点F的坐标为(﹣1,0)或(,)
44.【解答】解:(1)在Rt△ABC中,∠B=90°,BC=3,∠A=30°,
∴AB=BC=3,
在Rt△BDE中,∠BDE=30°,BE=2,
∴BD=BE=2,
∴EC=1,AD=,
∴=,此时AD⊥EC,
故答案为:,垂直;
(2)结论成立.
理由:∵∠ABC=∠DBE=90°,
∴∠ABD=∠CBE,
∵AB=BC,BD=BE,
∴=,
∴△ABD∽△CBE,
∴==,∠ADB=∠BEC,
∵∠ADB+∠CDB=180°,
∴∠CDB+∠BEC=180°,
∴∠DBE+∠DCE=180°,
∵∠DBE=90°,
∴∠DCE=90°,
∴AD⊥EC;
(3)如图3中,过点B作BJ⊥AC于点J,设BD交AK于点K,过点K作KT⊥AC于点T.
∵∠AJB=90°,∠BAC=30°,
∴∠ABJ=60°,
∴∠KBJ=60°﹣α.
∵AB=3,
∴BJ=AB=,AJ=BJ=,
当DF=BE时,四边形BEFD是矩形(由∠DBE=90°,∠F=90,取DE中点,证明BDFE四点共圆,再由BE=DF推得弧等,从而圆周角∠DEF=∠BDE=30°,则∠BEF=90°,由3个直角得矩形),
∴∠ADB=90°,AD===,
设KT=m,则AT=m,AK=2m,
∵∠KTB=∠ADB=90°,
∴tanα==,
∴=,
∴BT=m,
∴m+m=3,
∴m=,
∴AK=2m=,
∴KJ=AJ﹣AK=﹣=,
∴tan(60°﹣α)==.
解法二:证明∠CAF=60°﹣α,
通过tan(60°﹣α)=求解即可.
45.【解答】解:(1)将点A(﹣3,0)和点B(1,0)代入y=x2+bx+c,
∴,
解得,
∴y=x2+2x﹣3;
(2)∵y=x2+2x﹣3=(x+1)2﹣4,
∴抛物线的顶点(﹣1,﹣4),
∵顶点(﹣1,﹣4)关于原点的对称点为(1,4),
∴抛物线F2的解析式为y=﹣(x﹣1)2+4,
∴y=﹣x2+2x+3;
(3)由题意可得,抛物线F3的解析式为y=﹣(x﹣1)2+6=﹣x2+2x+5,
①联立方程组,
解得x=2或x=﹣2,
∴C(﹣2,﹣3)或D(2,5);
②设直线CD的解析式为y=kx+b,
∴,
解得,
∴y=2x+1,
过点M作MF∥y轴交CD于点F,过点N作NE∥y轴交CD于点E,
设M(m,m2+2m﹣3),N(n,﹣n2+2n+5),
则F(m,2m+1),E(n,2n+1),
∴MF=2m+1﹣(m2+2m﹣3)=﹣m2+4,
NE=﹣n2+2n+5﹣2n﹣1=﹣n2+4,
∵﹣2<m<2,﹣2<n<2,
∴当m=0时,MF有最大值4,
当n=0时,NE有最大值4,
∵S四边形CMDN=S△CDN+S△CDM=×4×(MF+NE)=2(MF+NE),
∴当MF+NE最大时,四边形CMDN面积的最大值为16.
46.【解答】解:(1),,
故答案为,;
(2)猜想:是减函数,
证明:任取x1<x2,x1>0,x2>0,则=,
∵x1<x2且x1>0,x2>0,
∴x2﹣x1>0,x1x2>0,
∴>0,即f(x1)﹣f(x2)>0,
∴函数是减函数,
故答案为减.
47.【解答】解:(1)∵二次函数y=ax2+bx+c(a≠0)的图象经过C(2,﹣3),且与x轴交于原点及点B(8,0),
∴c=0,二次函数表达式可设为:y=ax2+bx(a≠0),
将C(2,﹣3),B(8,0)代入y=ax2+bx得:

解得:,
∴二次函数的表达式为;
(2)∵=(x﹣4)2﹣4,
∴抛物线的顶点A(4,﹣4),
设直线AB的函数表达式为y=kx+m,将A(4,﹣4),B(8,0)代入,得:

解得:,
∴直线AB的函数表达式为y=x﹣8;
(3)△ABO是等腰直角三角形.
方法1:如图1,过点A作AF⊥OB于点F,则F(4,0),
∴∠AFO=∠AFB=90°,OF=BF=AF=4,
∴△AFO、△AFB均为等腰直角三角形,
∴OA=AB=4,∠OAF=∠BAF=45°,
∴∠OAB=90°,
∴△ABO是等腰直角三角形.
方法2:∵△ABO的三个顶点分别是O(0,0),A(4,﹣4),B(8,0),
∴OB=8,OA===,
AB===,
且满足OB2=OA2+AB2,
∴△ABO是等腰直角三角形;
(4)如图2,以O为圆心,2为半径作圆,则点P在圆周上,依题意知:
动点E的运动时间为t=AP+PB,
在OA上取点D,使OD=,连接PD,
则在△APO和△PDO中,
满足:==2,∠AOP=∠POD,
∴△APO∽△PDO,
∴==2,
从而得:PD=AP,
∴t=AP+PB=PD+PB,
∴当B、P、D三点共线时,PD+PB取得最小值,
过点D作DG⊥OB于点G,由于,且△ABO为等腰直角三角形,
则有 DG=1,∠DOG=45°
∴动点E的运动时间t的最小值为:t=DB===5.
48.【解答】解:(1)设二次函数表达式为:y=ax2+bx+3,
将A(1,0)、B(4,0)代入y=ax2+bx+3得:

解得,
∴抛物线的函数表达式为:,
又∵=,==,
∴顶点为D;
(2)依题意,t秒后点M的运动距离为CM=t,则ME=3﹣t,点N的运动距离为EN=2t.
①当△EMN∽△OBC时,
∴,
解得t=;
②当△EMN∽△OCB时,
∴,
解得t=;
综上所述,当或时,以M、E、N为顶点的三角形与△BOC相似;
(3)∵点关于点D的对称点为点G,
∴,
∵直线l:y=kx+m与抛物线只有一个公共点,
∴只有一个实数解,
∴Δ=0,
即:,
解得:,
利用待定系数法可得直线GA的解析式为:,直线GB的解析式为:,
联立,结合已知,
解得:xH=,
同理可得:xK=,
则:GH==,GK==×,
∴GH+GK=+×=,
∴GH+GK的值为

转载请注明出处卷子答案网-一个不只有答案的网站 » 2021、2022年湖南省各市州中考数学真题压轴专辑 (含解析)

分享:

相关推荐