试卷答案
寻你做寻,想你所想

第07讲 abc和二次函数图像的九种考法-2023年中考数学重点核心知识点专题讲+练(原卷版+解析版)

第07讲 a,b,c和二次函数图像的九种考法(解析)
如图,二次函数的图象关于直线对称,与x轴交于,两点,若
考法 解决方法 本题结果
① 二次函数图像开口向上时,a>0;开口向下,则a<0; :和共同决定了函数对称轴的位置,“左同右异”,当对称轴在y轴左侧时,a,b同号,当对称轴在y轴右侧时,a,b异号。 c为图像和y轴交点的纵坐标。 a>0 b<0 c<0
当图像和x轴有两个交点时,>0; 当图像和x轴有一个交点时,=0; 当图像和x轴没有交点时,<0。 <0
③a+b+c a-b+c 4a+2b+c 4a-2b+c 9a+3b+c 9a-3b+c 用特殊值进行判断: a+b+c即为当x=1时的函数值; 4a-2b+c即为当x=-2时的函数值。 a+b+c<0 a-b+c<0
④3a+2b 只有a,b时,用对称轴代换,消去一个未知数进行判断 ∵ = 1,∴b=- 2а,∴3a+2b= 3a-4a= -a,∵a>0,∴3a+2b<0
⑤c+a 只有a,c或只有b,c时,先用对称轴代换,消去一个未知数,然后利用④中的结果判断结果 ∵a-b+c<0,∴a+c⑥b+2c 若c的系数不是1,可以先化成1再进行上述计算,或这把③中的某个式子中的c的系数变成题里的形式。 ∵∴, ∵a+b+c<0, ∴2a+2b+2c<0,-b+2b+2c<0,b+2c<0
⑦am2+bm和a+b的小小关系 同时加上c,am2+bm+c,a+b+c 第一个式子是当x=m时的函数值,第二个式子是当x=1时的函数值;由图可知,x=1时函数取最小值。 am2+bm≥a+b
⑧(a+c)2-b2 (a+c)2-b2=(a+b+c)(a+c-b) (a+c)2-b2=(a+b+c)(a+c-b)>0
⑨和4a的大小关系 可以把代数式变成顶点的纵坐标公式 顶点坐标() 假如定点纵坐标小于-1,则,<-4a,- >4a
1.(2022·内蒙古·中考真题)如图,抛物线()的对称轴为直线,抛物线与x轴的一个交点坐标为),下列结论:①;②;③当时,x的取值范围是;④点,都在抛物线上,则有.其中结论正确的个数是( )
A.1个 B.2个 C.3个 D.4个
【答案】C
【分析】根据抛物线的开口,对称轴,特殊值x=-1可判断①②正确,根据图像可得,当y>0时,是x轴上方的图像,可判断③错误,求出,,结合①②的结论即可判断出④正确.
【详解】∵抛物线的开口向下,a<0,对称轴为x=1,
∴,
∴,
∵抛物线交于y轴正半轴,
∴c>0,
∴,故①正确;
∵抛物线与x轴交于(-1,0),
∴当x=-1时,,
∵,
∴将代入,得3a+c=0,故②正确;
根据图像可得,当y>0时,是x轴上方的图像,抛物线过点(-1,0),对称轴为x=1,
根据抛物线的对称性可得,抛物线过点(3,0),
∴y>0时,有,故③错误;
∵抛物线与x轴的两个交点为:(-1,0),(3,0),对称轴为x=1,
当x=-2时,,
当x=2时,,
∵,3a+c=0,a<0,
∴,,
∴,故④正确,
故选:C.
【点睛】本题考查了二次函数的图像和性质,解决这类题需要掌握:a看抛物线开口方向,b往往看对称轴,c看抛物线与y轴的交点,以及抛物线的对称性以及代入特殊点等.
2.(2022·湖北黄石·统考中考真题)已知二次函数的部分图象如图所示,对称轴为直线,有以下结论:①;②若t为任意实数,则有;③当图象经过点时,方程的两根为,(),则,其中,正确结论的个数是( )
A.0 B.1 C.2 D.3
【答案】D
【分析】利用抛物线开口方向得到a>0,利用抛物线的对称轴方程得到,利用抛物线与y轴的交点位置得到c<0,则可对①进行判断;利用二次函数当x=-1时有最小值可对②进行判断;由于二次函数与直线y=3的一个交点为(1,3),利用对称性得到二次函数y=ax2+bx+c与直线y=3的另一个交点为(-3,3),从而得到x1=-3,x2=1,则可对③进行判断.
【详解】∵抛物线开口向上,
∴,
∵抛物线的对称轴为直线,即,
∴,
∵抛物线与y轴的交点在x轴下方,
∴,
∴,所以①正确;
∵时,y有最小值,
∴(t为任意实数),即,所以②正确;
∵图象经过点时,代入解析式可得,
方程可化为,消a可得方程的两根为,,
∵抛物线的对称轴为直线,
∴二次函数与直线的另一个交点为,
,代入可得,
所以③正确.
综上所述,正确的个数是3.
故选D.
【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).
3.(2022·辽宁丹东·统考中考真题)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(5,0),与y轴交于点C,其对称轴为直线x=2,结合图象分析如下结论:①abc>0;②b+3a<0;③当x>0时,y随x的增大而增大;④若一次函数y=kx+b(k≠0)的图象经过点A,则点E(k,b)在第四象限;⑤点M是抛物线的顶点,若CM⊥AM,则a=.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
【答案】D
【分析】①正确,根据抛物线的位置判断即可;②正确,利用对称轴公式,可得b=﹣4a,可得结论;③错误,应该是x>2时,y随x的增大而增大;④正确,判断出k>0,可得结论;⑤正确,设抛物线的解析式为y=a(x+1)(x﹣5)=a(x﹣2)2﹣9a,可得M(2,﹣9a),C(0,﹣5a),过点M作MH⊥y轴于点H,设对称轴交x轴于点K.利用相似三角形的性质,构建方程求出a即可.
【详解】解:∵抛物线开口向上,
∴a>0,
∵对称轴是直线x=2,
∴﹣=2,
∴b=﹣4a<0
∵抛物线交y轴的负半轴,
∴c<0,
∴abc>0,故①正确,
∵b=﹣4a,a>0,
∴b+3a=﹣a<0,故②正确,
观察图象可知,当0<x≤2时,y随x的增大而减小,故③错误,
一次函数y=kx+b(k≠0)的图象经过点A,
∵b<0,
∴k>0,此时E(k,b)在第四象限,故④正确.
∵抛物线经过(﹣1,0),(5,0),
∴可以假设抛物线的解析式为y=a(x+1)(x﹣5)=a(x﹣2)2﹣9a,
∴M(2,﹣9a),C(0,﹣5a),
过点M作MH⊥y轴于点H,设对称轴交x轴于点K.
∵AM⊥CM,
∴∠AMC=∠KMH=90°,
∴∠CMH=∠KMA,
∵∠MHC=∠MKA=90°,
∴△MHC∽△MKA,
∴=,
∴=,
∴a2=,
∵a>0,
∴a=,故⑤正确,
故选:D.
【点睛】本题考查二次函数的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考选择题中的压轴题.
4.(2022·湖北荆门·统考中考真题)抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)和点(x0,y0),且c>0.有下列结论:①a<0;②对任意实数m都有:am2+bm≥4a﹣2b;③16a+c>4b;④若>﹣4,则>c.其中正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
【答案】B
【分析】根据抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)且c>0,即可判断开口向下,即可判断①;根据二次函数的性质即可判断②;根据抛物线的对称性即可判断③;根据抛物线的对称性以及二次函数的性质即可判断④.
【详解】∵抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2),且c>0,
∴抛物线开口向下,则a<0,故①正确;
∵抛物线开口向下,对称轴为x=﹣2,
∴函数的最大值为4a﹣2b+c,
∴对任意实数m都有:am2+bm+c≤4a﹣2b+c,即am2+bm≤4a﹣2b,故②错误;
∵对称轴为x=﹣2,c>0.
∴当x=﹣4时的函数值大于0,即16a﹣4b+c>0,
∴16a+c>4b,故③正确;
∵对称轴为x=﹣2,点(0,c)的对称点为(﹣4,c),
∵抛物线开口向下,
∴若-4<<0,则>c.若≥0,则≤c,故④错误;
故选:B
【点睛】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数与方程及不等式的关系,掌握二次函数的性质.
5.(2022·四川绵阳·统考中考真题)如图,二次函数的图象关于直线对称,与x轴交于,两点,若,则下列四个结论:①,②,③,④.
正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
【答案】B
【分析】根据二次函数的对称性,即可判断①;由开口方向和对称轴即可判断②;根据抛物线与x轴的交点已经x=-1时的函数的取值,即可判断③;根据抛物线的开口方向、对称轴,与y轴的交点以及a-b+c<0,即可判断④.
【详解】∵对称轴为直线x=1,-2∴3<x2<4,①正确,
∵ = 1,
∴b=- 2а,
∴3a+2b= 3a-4a= -a,
∵a>0,
∴3a+2b<0,②错误;
∵抛物线与x轴有两个交点,
∴b2 - 4ac > 0,根据题意可知x=-1时,y<0,
∴a-b+c<0,
∴a+c∵a>0,
∴b=-2a<0,
∴a+c<0,
∴b2 -4ac > a+ c,
∴b2>a+c+4ac,③正确;
∵抛物线开口向上,与y轴的交点在x轴下方,
∴a>0,c<0,
∴a>c,
∵a-b+c<0,b=-2a,
∴3a+c<0,
∴c<-3a,
∴b=–2a,
∴b>c,以④错误;
故选B
【点睛】本题主要考查图象与二次函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系,掌握二次函数的对称性.
6.(2022·黑龙江牡丹江·统考中考真题)如图,抛物线的对称轴是,并与x轴交于A,B两点,若,则下列结论中:①;②;③;④若m为任意实数,则,正确的个数是( )
A.1 B.2 C.3 D.4
【答案】C
【分析】根据函数图像的开口方向,对称轴,图像与y轴的交点,即可判断①;根据对称轴x= - 2,OA=5OB,可得OA=5,OB=1,点A(-5,0),点B(1,0),当x=1时,y=0即可判断②;根据对称轴x= - 2以及a+b+c=0得a与c的关系,即可判断③;根据函数的最小值是当x=-2时y=4a-2b+c即可判断④.
【详解】解:①观察图像可知a>0,b>0,c<0,
∴abc<0,
故①错误
②∵对称轴为直线x= - 2 ,OA=5OB,可得OA=5 ,OB=1
∴点A(-5,0),点B(1,0)
∴当x= -1时,y=0即a+b+c= 0
∴(a+c)2-b2=(a+b+c)(a+c-b)=0
故②正确
③抛物线的对称轴为直线x=- 2,即 =-2
∴b=4a
∵a+b+c=0
∴ 5a+c=0
∴c=-5a
∴9a+4c=-11a<0,
故③正确
④ 当x=-2时函数有最小值y=4a-2b+c,
由am2+bm+2b≥4a,可得
am2+bm+c≥4a-2b+c
∴若m为任意实数,则am2+bm+2b≥4a,
故④正确
故选C
【点睛】本题考查了二次函数图像与系数的关系,二次函数图像上点的坐标特征,解决本题的关键是掌握二次函数图像与系数关系.
7.(2022·四川广安·统考中考真题)已知抛物线y=ax2 +bx +c的对称轴为x=1,与x轴正半轴的交点为A(3,0),其部分图象如图所示,有下列结论:①abc >0;②2c﹣3b <0;③5a +b+2c=0;④若B(,y1)、C(,y2)、D(,y3)是抛物线上的三点,则y1A.1 B.2 C.3 D.4
【答案】B
【分析】根据二次函数的图象与性质一一判断即可.
【详解】解:由图象可知,开口向上,图象与y轴负半轴有交点,则,,
对称轴为直线,则,
∴,故①正确;
当时,,
∵,
∴,即
∴,故②错误;
∵对称轴为直线,
∴抛物线与x轴负半轴的交点为(,0),
∴,
∵,
两式相加,则,
∴,故③错误;
∵,,,
∴,
∴根据开口向上,离对称轴越近其对应的函数值越小,则有,故④正确;
∴正确的结论有2个,
故选:B
【点睛】本题考查了二次函数的图象及性质;熟练掌握二次函数图象及性质,能够通过函数图象提取信息是解题的关键.
8.(2022·辽宁抚顺·统考中考真题)抛物线的部分图象如图所示,对称轴为直线,直线与抛物线都经过点,下列说法:①;②;③与是抛物线上的两个点,则;④方程的两根为;⑤当时,函数有最大值,其中正确的个数是( )
A.2 B.3 C.4 D.5
【答案】A
【分析】抛物线的对称轴为直线,开口向下,可得,,故①正确;根据抛物线过点,可得,从而得到,故②错误;由抛物线的对称轴为直线,开口向下,可得当时,y随x的增大而减小,关于对称轴的对称点为,可得到,故③错误;令y=0,则解得:,故④正确;根据二次函数的性质可得当时,函数有最大值,再由直线经过点,可得,从而得到,进而得到,故⑤错误,即可求解.
【详解】解:∵抛物线的对称轴为直线,开口向下,
∴,
∴,
∴,故①正确;
∵抛物线过点,
∴,
∵,
∴,即,
∵,
∴,故②错误;
∵抛物线的对称轴为直线,开口向下,
∴当时,y随x的增大而减小,关于对称轴的对称点为,
∵,
∴,故③错误;
令y=0,则
解得:,
∴方程的两根为,故④正确;

∵,
∴当时,函数有最大值,
∵直线经过点,
∴,即,
∵,
∴,
∴,
∵,
∴,
∴当时,函数有最大值,故⑤错误;
∴正确的有2个.
故选:A
【点睛】本题主要考查了二次函数的图象和性质,一次函数的图形和性质,熟练掌握二次函数的图象和性质,一次函数的图形和性质,并利用数形结合思想解答是解题的关键.
9.(2022·四川达州·统考中考真题)二次函数的部分图象如图所示,与y轴交于,对称轴为直线.以下结论:①;②;③对于任意实数m,都有成立;④若,,在该函数图象上,则;⑤方程(,k为常数)的所有根的和为4.其中正确结论有( )
A.2 B.3 C.4 D.5
【答案】A
【分析】根据图象可判断,即可判断①正确;令,解得,根据图得,,即可求出a的范围,即可判断②错误;由代入变形计算即可判断③错误;由抛物线的增减性和对称性即可判断④错误;将所求的方程解的问题转化为抛物线与两直线的交点问题,根据交点的个数,以及抛物线的对称性可知⑤错误.
【详解】二次函数的部分图象与y轴交于,对称轴为直线,抛物线开头向上,


,故①正确;
令,
解得,
由图得,,
解得,故②正确;

可化为,即,

若成立,则,故③错误;
当时,随的增大而减小,


对称轴为直线,
时与时所对应的值相等,
,故④错误;
(,k为常数)的解,是抛物线与直线y=±k的交点的横坐标,
则(,k为常数)解的个数可能有2个,3个或4个,
根据抛物线的对称性可知,
当有3个或4个交点时,(,k为常数)的所有解的和是4,
当有2个交点时,即k=0时,(,k为常数)的所有解的和是2,
故⑤错误;
综上,正确的个数为2,
故选:A.
【点睛】本题考查了二次函数图象和性质,一元二次方程求根公式,根与系数的关系等,熟练掌握知识点,能够运用数形结合的思想是解题的关键.
10.(2022·贵州毕节·统考中考真题)在平面直角坐标系中,已知二次函数的图象如图所示,有下列5个结论:①;②;③;④;⑤.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
【答案】B
【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】解:①∵抛物线的开口方向向下,
∴a<0,
∵对称轴在y轴右侧,
∴对称轴为x=>0,
∵a<0,
∴b>0,
∵抛物线与y轴的交点在y轴的正半轴上,
∴c>0,
∴abc<0,
故①错误;
②∵对称轴为x==1,
∴b=﹣2a,
∴2a+b=0,
故②错误;
③由图象的对称性可知:当x=3时,y<0,
∴9a+3b+c<0,
故③错误;
④由图象可知,该抛物线与x轴有两个不同的交点,
∴b2﹣4ac>0,即b2>4ac;
故④正确;
⑤由图象可知当x=﹣1时,y<0,
∴a﹣b+c<0,
∴,
故⑤正确.
综上所述,正确的结论是:④⑤.
故选:B.
【点睛】本题考查了图象与二次函数系数之间的关系,利用对称轴的范围求a与b的关系、熟练掌握二次函数与方程之间的转换是基础,数形结合的方法是解题的关键.
11.(2022·广西梧州·统考中考真题)如图,已知抛物线的对称轴是,直线轴,且交抛物线于点,下列结论错误的是( )
A. B.若实数,则
C. D.当时,
【答案】C
【分析】先根据抛物线对称轴求出,再由抛物线开口向上,得到,则由此即可判断A;根据抛物线开口向上在对称轴处取得最小值即可判断B;根据当时,,即可判断C;根据时,直线l与抛物线的两个交点分别在y轴的两侧,即可判断D.
【详解】解:∵抛物线的对称轴是,
∴,
∴,
∵抛物线开口向上,
∴,
∴,
∴,故A说法正确,不符合题意;
∵抛物线开口向下,抛物线对称轴为直线x=-1,
∴当x=-1时,,
∴当实数,则,
∴当实数时,,故B说法正确,不符合题意;
∵当时,,
∴a+2a-2<0,即3a-2<0,故C说法错误,符合题意;
∵,
∴直线l与抛物线的两个交点分别在y轴的两侧,
∴,故D说法正确,不符合题意;
故选C.
【点睛】本题主要考查了根据二次函数的图象去判断式子符号,二次函数的系数与图象之间的关系等等,熟知二次函数的相关知识是解题的关键.
12.(2022·湖北随州·统考中考真题)如图,已知开口向下的抛物线与x轴交于点对称轴为直线.则下列结论:①;②;③函数的最大值为;④若关于x的方数无实数根,则.正确的有( )
A.1个 B.2个 C.3个 D.4个
【答案】C
【分析】由图象可知,图像开口向下,a<0,对称轴为x=1,故,故b>0,且,则 图象与y轴的交点为正半轴,则c>0,由此可知abc<0,故①错误,由图象可知当x=1时,函数取最大值,将x=1,代入,中得:,计算出函数图象与x轴的另一交点为(3,0)设函数解析式为:,将交点坐标代入得化简得:,将x=1,代入可得:,故函数的最大值为-4a,、变形为:要使方程无实数根,则,将c=-3a,,代入得:,因为a<0,则,则,综上所述,结合以上结论可判断正确的项.
【详解】解:由图象可知,图像开口向下,a<0,对称轴为x=1,故,故b>0,且,则故②正确,
∵图象与y轴的交点为正半轴,
∴c>0,则abc<0,故①错误,
由图象可知当x=1时,函数取最大值,
将x=1,代入,中得:,
由图象可知函数与x轴交点为(﹣1,0),对称轴为将x=1,故函数图象与x轴的另一交点为(3,0),
设函数解析式为:,
将交点坐标代入得:,
故化简得:,
将x=1,代入可得:,故函数的最大值为-4a,故③正确,
变形为:要使方程无实数根,则,将c=-3a,,代入得:,因为a<0,则,则,综上所述,故④正确,
则②③④正确,
故选C.
【点睛】本题考查二次函数的一般式,二次函数的交点式,二次函数的最值,对称轴,以及交点坐标掌握数形结合思想是解决本题的关键.
13.(2022·四川广元·统考中考真题)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)abc<0;(2)4a+c>2b;(3)3b﹣2c>0;(4)若点A(﹣2,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)4a+2b≥m(am+b)(m为常数).其中正确的结论有( )
A.5个 B.4个 C.3个 D.2个
【答案】C
【分析】由图象可知,对称轴为直线,与x轴的一个交点为,然后可得,则有,进而可判断(1)(2)(3),最后根据函数的性质可进行判断(4)(5).
【详解】解:由图象及题意得:,对称轴为直线,与x轴的一个交点为,
∴,
∴,即,
∴,故(1)(3)正确;
由图象可知当x=-2时,则有,即,故(2)错误;
∵点A(﹣2,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,
∴根据二次函数开口向下,离对称轴的距离越近,其所对应的函数值越大,
∴,故(4)错误;
由图象可知当x=2时,该函数有最大值,最大值为,
∴当x=m时,(m为常数),则有,
∴,即为,故(5)正确;
综上所述:正确的有(1)(3)(5)共3个;
故选C.
【点睛】本题主要考查二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题的关键.
14.(2022·湖南株洲·统考中考真题)已知二次函数,其中、,则该函数的图象可能为( )
A. B.
C. D.
【答案】C
【分析】利用排除法,由得出抛物线与y轴的交点应该在y轴的负半轴上,排除A选项和D选项,根据B选项和C选项中对称轴,得出,抛物线开口向下,排除B选项,即可得出C为正确答案.
【详解】解:对于二次函数,
令,则,
∴抛物线与y轴的交点坐标为
∵,
∴,
∴抛物线与y轴的交点应该在y轴的负半轴上,
∴可以排除A选项和D选项;
B选项和C选项中,抛物线的对称轴,
∵ ,
∴,
∴抛物线开口向下,可以排除B选项,
故选C.
【点睛】本题考查二次函数的图象的性质,熟练掌握二次函数图象与三个系数之间的关系是解题的关键.
15.(2022·四川巴中·统考中考真题)函数的图象是由函数的图象轴上方部分不变,下方部分沿轴向上翻折而成,如图所示,则下列结论正确的是( )
① ;②; ③;④将图象向上平移1个单位后与直线有3个交点.
A.①② B.①③ C.②③④ D.①③④
【答案】D
【分析】根据函数图象与x轴交点的横坐标求出对称轴为,进而可得,故①正确;由函数图象与y轴的交点坐标为(0,3),的图象轴上方部分不变,下方部分沿轴向上翻折而成可知c=-3,故②错误;根据对称轴求出b<0,进而可得,故③正确;求出翻折前的二次函数的顶点坐标,然后根据平移的性质可得④正确.
【详解】解:由函数图象可得:与x轴交点的横坐标为-1和3,
∴对称轴为,即,
∴整理得:,故①正确;
∵与y轴的交点坐标为(0,3),
可知,开口向上,图中函数图象是由原函数下方部分沿轴向上翻折而成,
∴c=-3,故②错误;
∵中a>0,,
∴b<0,
又∵c=-3<0,
∴,故③正确;
设抛物线的解析式为,
代入(0,3)得:,
解得:a=-1,
∴,
∴顶点坐标为(1,4),
∵点(1,4)向上平移1个单位后的坐标为(1,5),
∴将图象向上平移1个单位后与直线有3个交点,故④正确;
故选:D.
【点睛】本题考查了二次函数的图象和性质,掌握二次函数的对称轴公式,顶点坐标的求法是解题的关键.
16.(2022·辽宁朝阳·统考中考真题)如图,二次函数y=ax2+bx+c(a为常数,且a≠0)的图象过点(﹣1,0),对称轴为直线x=1,且2<c<3,则下列结论正确的是( )
A.abc>0 B.3a+c>0
C.a2m2+abm≤a2+ab(m为任意实数) D.﹣1<a<﹣
【答案】D
【分析】根据二次函数的图象与系数的关系即可求出答案.
【详解】解:A.抛物线的对称轴在y轴右侧,则ab<0,而c>0,
故abc<0,不正确,不符合题意;
B.函数的对称轴为直线x=-=1,则b=-2a,
∵从图象看,当x=-1时,y=a-b+c=3a+c=0,
故不正确,不符合题意;
C.∵当x=1时,函数有最大值为y=a+b+c,
∴(m为任意实数),
∴,
∵a<0,
∴(m为任意实数)
故不正确,不符合题意;
D.∵-=1,故b=-2a,
∵x=-1,y=0,故a-b+c=0,
∴c=-3a,
∵2<c<3,
∴2<-3a<3,
∴-1<a<﹣,故正确,符合题意;
故选:D.
【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用图象与系数的关系,本题属于中等题型.
17.(2022·四川资阳·中考真题)如图是二次函数的图象,其对称轴为直线,且过点.有以下四个结论:①,②,③,④若顶点坐标为,当时,y有最大值为2、最小值为,此时m的取值范围是.其中正确结论的个数是( )
A.4个 B.3个 C.2个 D.1个
【答案】A
【分析】①:根据二次函数的对称轴,,即可判断出;
②:结合图象发现,当时,函数值大于1,代入即可判断;
③:结合图象发现,当时,函数值小于0,代入即可判断;
④:运用待定系数法求出二次函数解析式,再利用二次函数的对称性即可判断.
【详解】解:∵二次函数的图象,其对称轴为直线,且过点,
∴,,
∴,∴,故①正确;
从图中可以看出,当时,函数值大于1,因此将代入得,,即,故②正确;
∵,∴,从图中可以看出,当时,函数值小于0,
∴,∴,故③正确;
∵二次函数的顶点坐标为,
∴设二次函数的解析式为,将代入得,,
解得,
∴二次函数的解析式为,
∴当时,;
∴根据二次函数的对称性,得到,故④正确;
综上所述,①②③④均正确,故有4个正确结论,
故选A.
【点睛】本题考查了二次函数的图象和性质,待定系数法求二次函数解析式等,熟练掌握二次函数的图象和性质是本题的关键.
18.(2022·山东日照·统考中考真题)已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为,且经过点(-1,0).下列结论:①3a+b=0;②若点,(3,y2)是抛物线上的两点,则y1A.1个 B.2个 C.3个 D.4个
【答案】C
【分析】由对称轴为即可判断①;根据点,(3,y2)到对称轴的距离即可判断②;由抛物线经过点(-1,0),得出a-b+c=0,对称轴,得出,代入即可判断③;根据二次函数的性质以及抛物线的对称性即可判断④.
【详解】解:∵对称轴,
∴b=-3a,
∴3a+b=0,①正确;
∵抛物线开口向上,点到对称轴的距离小于点(3,y2)的距离,
∴y1∵经过点(-1,0),
∴a-b+c=0,
∵对称轴,
∴,
∴,
∴3c=4b,
∴4b-3c=0,故③错误;
∵对称轴,
∴点(0,c)的对称点为(3,c),
∵开口向上,
∴y≤c时,0≤x≤3.故④正确;
故选:C.
【点睛】本题考查了二次函数的性质及二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.
19.(2022·山东烟台·统考中考真题)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,其对称轴为直线x=﹣,且与x轴的一个交点坐标为(﹣2,0).下列结论:①abc>0;②a=b;③2a+c=0;④关于x的一元二次方程ax2+bx+c﹣1=0有两个相等的实数根.其中正确结论的序号是( )
A.①③ B.②④ C.③④ D.②③
【答案】D
【分析】根据对称轴、开口方向、与y轴的交点位置即可判断a、b、c与0的大小关系,然后将由对称可知a=b,从而可判断答案.
【详解】解:①由图可知:a>0,c<0,<0,
∴b>0,
∴abc<0,故①不符合题意.
②由题意可知:=,
∴b=a,故②符合题意.
③将(﹣2,0)代入y=ax2+bx+c,
∴4a﹣2b+c=0,
∵a=b,
∴2a+c=0,故③符合题意.
④由图象可知:二次函数y=ax2+bx+c的最小值小于0,
令y=1代入y=ax2+bx+c,
∴ax2+bx+c=1有两个不相同的解,故④不符合题意.
故选:D.
【点睛】本题考查二次函数的图像与系数的关系,解题的关键是正确地由图象得出a、b、c的数量关系,本题属于基础题型.
20.(2022·湖北恩施·统考中考真题)已知抛物线,当时,;当时,.下列判断:
①;②若,则;③已知点,在抛物线上,当时,;④若方程的两实数根为,,则.
其中正确的有( )个.
A.1 B.2 C.3 D.4
【答案】C
【分析】利用根的判别式可判断①;把,代入,得到不等式,即可判断②;求得抛物线的对称轴为直线x=b,利用二次函数的性质即可判断③;利用根与系数的关系即可判断④.
【详解】解:∵a=>0,开口向上,且当时,;当时,,
∴抛物线与x轴有两个不同的交点,
∴,
∴;故①正确;
∵当时,,
∴-b+c<0,即b>+c,
∵c>1,
∴b>,故②正确;
抛物线的对称轴为直线x=b,且开口向上,
当x∴当时,;故③正确;
∵方程的两实数根为x1,x2,
∴x1+x2=2b,
∵当c>1时,b>,
∴则x1+x2>3,但当c<1时,则b未必大于,则x1+x2>3的结论不成立,
故④不正确;
综上,正确的有①②③,共3个,
故选:C.
【点睛】本题考查了二次函数的性质,一元二次方程的根的判别式以及根与系数的关系等知识,解题的关键是读懂题意,灵活运用所学知识解决问题.
21.(2022·黑龙江齐齐哈尔·统考中考真题)如图,二次函数的图象与y轴的交点在(0,1)与(0,2)之间,对称轴为,函数最大值为4,结合图象给出下列结论:①;②;③;④若关于x的一元二次方程 有两个不相等的实数根,则m>4;⑤当x<0时,y随x的增大而减小.其中正确的结论有( )
A.2个 B.3个 C.4个 D.5个
【答案】B
【分析】根据二次函数图象与性质逐个结论进行分析判断即可.
【详解】解:∵二次函数的对称轴为,

∴故①正确;
∵函数图象开口向下,对称轴为,函数最大值为4,
∴函数的顶点坐标为(-1,4)
当x=-1时,

∴,
∵二次函数的图象与y轴的交点在(0,1)与(0,2)之间,
∴<<2
∴<4+a<2
∴,故②正确;
∵抛物线与x轴有两个交点,

∴,故③正确;
∵抛物线的顶点坐标为(-1,4)且方程有两个不相等的实数根,

∴,故④错误;
由图象可得,当x>-1时,y随x的增大而减小,故⑤错误.
所以,正确的结论是①②③,共3个,
故选:B
【点睛】本题主要考查了二次函数图象与性质,,熟练掌握二次函数的图象与性质是解答本题的关键.
22.(2022·湖北鄂州·统考中考真题)如图,已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图像顶点为P(1,m),经过点A(2,1);有以下结论:①a<0;②abc>0;③4a+2b+c=1;④x>1时,y随x的增大而减小;⑤对于任意实数t,总有at2+bt≤a+b,其中正确的有( )
A.2个 B.3个 C.4个 D.5个
【答案】C
【分析】①根据抛物线的开口方向向下即可判定;②先运用二次函数图像的性质确定a、b、c的正负即可解答;③将点A的坐标代入即可解答;④根据函数图像即可解答;⑤运用作差法判定即可.
【详解】解:①由抛物线的开口方向向下,则a<0,故①正确;
②∵抛物线的顶点为P(1,m)
∴,b=-2a
∵a<0
∴b>0
∵抛物线与y轴的交点在正半轴
∴c>0
∴abc<0,故②错误;
③∵抛物线经过点A(2,1)
∴1=a·22+2b+c,即4a+2b+c=1,故③正确;
④∵抛物线的顶点为P(1,m),且开口方向向下
∴x>1时,y随x的增大而减小,即④正确;
⑤∵a<0
∴at2+bt-(a+b)
= at2-2at-a+2a
= at2-2at+a
=a(t2-2t+1)
= a(t-1)2≤0
∴at2+bt≤a+b,则⑤正确
综上,正确的共有4个.
故答案为C.
【点睛】本题主要考查了二次函数图像的性质,灵活运用二次函数图像的性质以及掌握数形结合思想成为解答本题的关键.
23.(2018·贵州安顺·中考真题)已知二次函数的图象如图,分析下列四个结论:
①;②;③;④,
其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
【答案】B
【分析】①由抛物线的开口方向,抛物线与轴交点的位置、对称轴即可确定、、的符号,即得的符号;②由抛物线与轴有两个交点判断即可;③分别比较当时、时,的取值,然后解不等式组可得,即;又因为,所以.故错误;④将代入抛物线解析式得到,再将代入抛物线解析式得到,两个不等式相乘,根据两数相乘异号得负的取符号法则及平方差公式变形后,得到,即可求解.
【详解】解:①∵抛物线开口向下,与轴交于正半轴,对称轴在轴左侧,
∴, ,,
∴与同号,
∴,
∴,故①错误;
②∵抛物线与轴有两个交点,
∴,故②正确;
③当,时,即 (1),
当时,,即 (2),
(1)(2)得:,
即,
又,
.故③错误;
④时,,时,,

即,
,故④正确.
综上所述,正确的结论有②④,共2个.
故选:B
【点睛】本题考查了二次函数图象与系数的关系.理解二次函数系数符号由抛物线开口方向、对称轴、抛物线与轴的交点抛物线与轴交点的个数确定是解题的关键.
24.(2022·山东枣庄·统考中考真题)小明在学习“二次函数”内容后,进行了反思总结.如图,二次函数y=ax2+bx+c(a≠0)图像的一部分与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,结合图像他得出下列结论:①ab>0且c>0;②a+b+c=0;③关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1;④若点(﹣4,y1),(﹣2,y2),(3,y3)均在二次函数图像上,则y1<y2<y3;⑤3a+c<0,其中正确的结论有 _____.(填序号,多选、少选、错选都不得分)
【答案】①②③
【分析】由抛物线的对称轴的位置以及与y轴的交点可判断①;由抛物线过点(1,0),即可判断②;由抛物线的对称性可以判断③;根据各点与抛物线对称轴的距离大小可以判断④;对称轴可得b=2a,由抛物线过点(1,0),可判断⑤.
【详解】∵抛物线对称轴在y轴的左侧,
∴ab>0,
∵抛物线与y轴交点在x轴上方,
∴c>0,①正确;
∵抛物线经过(1,0),
∴a+b+c=0,②正确.
∵抛物线与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,
∴另一个交点为(﹣3,0),
∴关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1,③正确;
∵﹣1﹣(﹣2)<﹣1﹣(﹣4)<3﹣(﹣1),抛物线开口向下,
∴y2>y1>y3,④错误.
∵抛物线与x轴的一个交点坐标为(1,0),
∴a+b+c=0,
∵=﹣1,
∴b=2a,
∴3a+c=0,⑤错误.
故答案为:①②③.
【点睛】本题考查了二次函数图像与系数的关系,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.
25.(2022·辽宁锦州·统考中考真题)如图,抛物线与x轴交于点和点,以下结论:
①;②;③;④当时,y随x的增大而减小.其中正确的结论有___________.(填写代表正确结论的序号)
【答案】①②##②①
【分析】根据二次函数的对称轴位置和抛物线开口方向确定①③,根据x=-2时判定②,由抛物线图像性质判定④.
【详解】解:①抛物线的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,故正确;
②x=-2时,函数值小于0,则4a-2b+c<0,故正确;
③与x轴交于点和点,则对称轴,故,故③错误;
④当时,图像位于对称轴左边,y随x的增大而减大.故④错误;
综上所述,正确的为①②.
故答案为:①②.
【点睛】本题考查了二次函数的图像和性质,要求熟悉掌握函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.
26.(2022·湖北武汉·统考中考真题)已知抛物线(,,是常数)开口向下,过,两点,且.下列四个结论:
①;
②若,则;
③若点,在抛物线上,,且,则;
④当时,关于的一元二次方程必有两个不相等的实数根.
其中正确的是_________(填写序号).
【答案】①③④
【分析】首先判断对称轴,再由抛物线的开口方向判断①;由抛物线经过A(-1,0),,当时,,求出,再代入判断②,抛物线,由点,在抛物线上,得,,把两个等式相减,整理得,通过判断,的符号判断③;将方程写成a(x-m)(x+1)-1=0,整理,得,再利用判别式即可判断④.
【详解】解:抛物线过,两点,且,


,即,
抛物线开口向下,,
,故①正确;
若,则,

,故②不正确;
抛物线,点,在抛物线上,
∴,,把两个等式相减,整理得,
,,,


,故③正确;
依题意,将方程写成a(x-m)(x+1)-1=0,整理,得,

,,
,,
, 故④正确.
综上所述,①③④正确.
故答案为;①③④.
【点睛】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.第07讲 a,b,c和二次函数图像的九种考法(原卷)
如图,二次函数的图象关于直线对称,与x轴交于,两点,若
考法 解决方法 本题结果
① 二次函数图像开口向上时,a>0;开口向下,则a<0; :和共同决定了函数对称轴的位置,“左同右异”,当对称轴在y轴左侧时,a,b同号,当对称轴在y轴右侧时,a,b异号。 c为图像和y轴交点的纵坐标。 a>0 b<0 c<0
当图像和x轴有两个交点时,>0; 当图像和x轴有一个交点时,=0; 当图像和x轴没有交点时,<0。 <0
③a+b+c a-b+c 4a+2b+c 4a-2b+c 9a+3b+c 9a-3b+c 用特殊值进行判断: a+b+c即为当x=1时的函数值; 4a-2b+c即为当x=-2时的函数值。 a+b+c<0 a-b+c<0
④3a+2b 只有a,b时,用对称轴代换,消去一个未知数进行判断 ∵ = 1,∴b=- 2а,∴3a+2b= 3a-4a= -a,∵a>0,∴3a+2b<0
⑤c+a 只有a,c或只有b,c时,先用对称轴代换,消去一个未知数,然后利用④中的结果判断结果 ∵a-b+c<0,∴a+c⑥b+2c 若c的系数不是1,可以先化成1再进行上述计算,或这把③中的某个式子中的c的系数变成题里的形式。 ∵∴, ∵a+b+c<0, ∴2a+2b+2c<0,-b+2b+2c<0,b+2c<0
⑦am2+bm和a+b的小小关系 同时加上c,am2+bm+c,a+b+c 第一个式子是当x=m时的函数值,第二个式子是当x=1时的函数值;由图可知,x=1时函数取最小值。 am2+bm≥a+b
⑧(a+c)2-b2 (a+c)2-b2=(a+b+c)(a+c-b) (a+c)2-b2=(a+b+c)(a+c-b)>0
⑨和4a的大小关系 可以把式子变成顶点的纵坐标公式 顶点坐标() 假如定点纵坐标小于-1,则,<-4a,- >4a
1.(2022·内蒙古·中考真题)如图,抛物线()的对称轴为直线,抛物线与x轴的一个交点坐标为),下列结论:①;②;③当时,x的取值范围是;④点,都在抛物线上,则有.其中结论正确的个数是( )
A.1个 B.2个 C.3个 D.4个
2.(2022·湖北黄石·统考中考真题)已知二次函数的部分图象如图所示,对称轴为直线,有以下结论:①;②若t为任意实数,则有;③当图象经过点时,方程的两根为,(),则,其中,正确结论的个数是( )
A.0 B.1 C.2 D.3
3.(2022·辽宁丹东·统考中考真题)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(5,0),与y轴交于点C,其对称轴为直线x=2,结合图象分析如下结论:①abc>0;②b+3a<0;③当x>0时,y随x的增大而增大;④若一次函数y=kx+b(k≠0)的图象经过点A,则点E(k,b)在第四象限;⑤点M是抛物线的顶点,若CM⊥AM,则a=.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
4.(2022·湖北荆门·统考中考真题)抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)和点(x0,y0),且c>0.有下列结论:①a<0;②对任意实数m都有:am2+bm≥4a﹣2b;③16a+c>4b;④若>﹣4,则>c.其中正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
5.(2022·四川绵阳·统考中考真题)如图,二次函数的图象关于直线对称,与x轴交于,两点,若,则下列四个结论:①,②,③,④.
正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
6.(2022·黑龙江牡丹江·统考中考真题)如图,抛物线的对称轴是,并与x轴交于A,B两点,若,则下列结论中:①;②;③;④若m为任意实数,则,正确的个数是( )
A.1 B.2 C.3 D.4
7.(2022·四川广安·统考中考真题)已知抛物线y=ax2 +bx +c的对称轴为x=1,与x轴正半轴的交点为A(3,0),其部分图象如图所示,有下列结论:①abc >0;②2c﹣3b <0;③5a +b+2c=0;④若B(,y1)、C(,y2)、D(,y3)是抛物线上的三点,则y1A.1 B.2 C.3 D.4
8.(2022·辽宁抚顺·统考中考真题)抛物线的部分图象如图所示,对称轴为直线,直线与抛物线都经过点,下列说法:①;②;③与是抛物线上的两个点,则;④方程的两根为;⑤当时,函数有最大值,其中正确的个数是( )
A.2 B.3 C.4 D.5
9.(2022·四川达州·统考中考真题)二次函数的部分图象如图所示,与y轴交于,对称轴为直线.以下结论:①;②;③对于任意实数m,都有成立;④若,,在该函数图象上,则;⑤方程(,k为常数)的所有根的和为4.其中正确结论有( )
A.2 B.3 C.4 D.5
10.(2022·贵州毕节·统考中考真题)在平面直角坐标系中,已知二次函数的图象如图所示,有下列5个结论:①;②;③;④;⑤.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
11.(2022·广西梧州·统考中考真题)如图,已知抛物线的对称轴是,直线轴,且交抛物线于点,下列结论错误的是( )
A. B.若实数,则
C. D.当时,
12.(2022·湖北随州·统考中考真题)如图,已知开口向下的抛物线与x轴交于点对称轴为直线.则下列结论:①;②;③函数的最大值为;④若关于x的方数无实数根,则.正确的有( )
A.1个 B.2个 C.3个 D.4个
13.(2022·四川广元·统考中考真题)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)abc<0;(2)4a+c>2b;(3)3b﹣2c>0;(4)若点A(﹣2,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)4a+2b≥m(am+b)(m为常数).其中正确的结论有( )
A.5个 B.4个 C.3个 D.2个
14.(2022·湖南株洲·统考中考真题)已知二次函数,其中、,则该函数的图象可能为( )
A. B.
C. D.
15.(2022·四川巴中·统考中考真题)函数的图象是由函数的图象轴上方部分不变,下方部分沿轴向上翻折而成,如图所示,则下列结论正确的是( )
① ;②; ③;④将图象向上平移1个单位后与直线有3个交点.
A.①② B.①③ C.②③④ D.①③④
16.(2022·辽宁朝阳·统考中考真题)如图,二次函数y=ax2+bx+c(a为常数,且a≠0)的图象过点(﹣1,0),对称轴为直线x=1,且2<c<3,则下列结论正确的是( )
A.abc>0 B.3a+c>0
C.a2m2+abm≤a2+ab(m为任意实数) D.﹣1<a<﹣
17.(2022·四川资阳·中考真题)如图是二次函数的图象,其对称轴为直线,且过点.有以下四个结论:①,②,③,④若顶点坐标为,当时,y有最大值为2、最小值为,此时m的取值范围是.其中正确结论的个数是( )
A.4个 B.3个 C.2个 D.1个
18.(2022·山东日照·统考中考真题)已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为,且经过点(-1,0).下列结论:①3a+b=0;②若点,(3,y2)是抛物线上的两点,则y1A.1个 B.2个 C.3个 D.4个
19.(2022·山东烟台·统考中考真题)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,其对称轴为直线x=﹣,且与x轴的一个交点坐标为(﹣2,0).下列结论:①abc>0;②a=b;③2a+c=0;④关于x的一元二次方程ax2+bx+c﹣1=0有两个相等的实数根.其中正确结论的序号是( )
A.①③ B.②④ C.③④ D.②③
20.(2022·湖北恩施·统考中考真题)已知抛物线,当时,;当时,.下列判断:
①;②若,则;③已知点,在抛物线上,当时,;④若方程的两实数根为,,则.
其中正确的有( )个.
A.1 B.2 C.3 D.4
21.(2022·黑龙江齐齐哈尔·统考中考真题)如图,二次函数的图象与y轴的交点在(0,1)与(0,2)之间,对称轴为,函数最大值为4,结合图象给出下列结论:①;②;③;④若关于x的一元二次方程 有两个不相等的实数根,则m>4;⑤当x<0时,y随x的增大而减小.其中正确的结论有( )
A.2个 B.3个 C.4个 D.5个
22.(2022·湖北鄂州·统考中考真题)如图,已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图像顶点为P(1,m),经过点A(2,1);有以下结论:①a<0;②abc>0;③4a+2b+c=1;④x>1时,y随x的增大而减小;⑤对于任意实数t,总有at2+bt≤a+b,其中正确的有( )
A.2个 B.3个 C.4个 D.5个
23.(2018·贵州安顺·中考真题)已知二次函数的图象如图,分析下列四个结论:
①;②;③;④,
其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
24.(2022·山东枣庄·统考中考真题)小明在学习“二次函数”内容后,进行了反思总结.如图,二次函数y=ax2+bx+c(a≠0)图像的一部分与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,结合图像他得出下列结论:①ab>0且c>0;②a+b+c=0;③关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1;④若点(﹣4,y1),(﹣2,y2),(3,y3)均在二次函数图像上,则y1<y2<y3;⑤3a+c<0,其中正确的结论有 _____.(填序号,多选、少选、错选都不得分)
25.(2022·辽宁锦州·统考中考真题)如图,抛物线与x轴交于点和点,以下结论:
①;②;③;④当时,y随x的增大而减小.其中正确的结论有___________.(填写代表正确结论的序号)
26.(2022·湖北武汉·统考中考真题)已知抛物线(,,是常数)开口向下,过,两点,且.下列四个结论:
①;
②若,则;
③若点,在抛物线上,,且,则;
④当时,关于的一元二次方程必有两个不相等的实数根.
其中正确的是_________(填写序号).

转载请注明出处卷子答案网-一个不只有答案的网站 » 第07讲 abc和二次函数图像的九种考法-2023年中考数学重点核心知识点专题讲+练(原卷版+解析版)

分享:

相关推荐