北师大版2023年数学四年级上册第二单元过关检测A卷
一、填空(共19分)
1.线段有 个端点;射线有 个端点;直线 端点。
【答案】2;1;无
【知识点】线段、直线、射线的认识及表示
【解析】【解答】线段有2个端点,射线有1个,直线无端点。
【分析】按照端点区分,线分为直线、线段、射线。本题考查线的认识。
2.行人横穿马路要走互相 的白色斑马线。
【答案】平行
【知识点】平行的特征及性质
【解析】【解答】白色斑马线是互相平行的。
故答案为:平行。
【分析】同一平面内永不相交的两条直线互相平行,根据生活经验可知,白色斑马线是互相平行的线。
3.两条互相垂直的直线的夹角是 。
【答案】直角
【知识点】垂直的特征及性质
【解析】【解答】 两条互相垂直的直线的夹角是直角。
故答案为:直角。
【分析】两直线相交所组成的角为直角时,称它们互相垂直,其中一条直线叫做另一条直线的垂线;如果两直线互相垂直,则它们相交所组成的角为直角。
4.手电筒和太阳射出来的光线,都可以看成是 。
【答案】射线
【知识点】线段、直线、射线的认识及表示
【解析】【解答】 手电筒和太阳射出来的光线,都可以看成是射线。
故答案为:射线。
【分析】此题主要考查了线段、直线和射线的特征, 直线、射线、线段都是直的,线段有两个端点,长度有限,不能向两端无限延长;射线有一个端点,长度无限,可以向一端无限延长;直线没有端点,长度无限,可以向两端无限延长,据此解答。
5.两点之间可以画无数条线,其中 最短。
【答案】线段
【知识点】两点间的距离及应用
【解析】【解答】 两点之间可以画无数条线,其中线段最短。
故答案为:线段。
【分析】根据对线段的认识可知,两点之间线段最短。
6.把一张长方形纸沿同一方向对折两次,打开后折痕互相 。
【答案】平行
【知识点】平行的特征及性质
【解析】【解答】 把一张长方形纸沿同一方向对折两次,打开后折痕互相平行。
故答案为:平行。
【分析】在同一平面内永不相交的两条直线互相平行,据此可以动手沿同一方向对折长方形两次,观察打开后的折痕。
7.把一个半圆平均分成 份,其中的1份所对的角的大小叫做1°。
【答案】180
【知识点】角的概念及表示方法
【解析】【解答】 把一个半圆平均分成180份,其中的1份所对的角的大小叫做1°。
故答案为:180。
【分析】根据对角的认识可知:度量角的单位通常用1°,人们将圆平均分成360份,其中1份所对的角的大小叫做1度,记作1°,把1°的角作为角的单位,由此解答即可。
8.时针从中午12点走到晚上12点,正好形成 度角,是 角。
【答案】360;周
【知识点】角的度量(计算);平角、周角的特征
【解析】【解答】 时针从中午12点走到晚上12点,正好形成360度角,是周角。
故答案为:360;周。
【分析】时针从中午12点走到晚上12点,正好转了一圈,也就是旋转了360°,周角=360°,据此解答。
9.锐角的度数小于 度,大于 度而小于180度的角叫做钝角, 度的角是直角,1个周角= 个平角= 个直角。
【答案】90;90;90;2;4
【知识点】锐角、钝角的特征;平角、周角的特征;角的类型及换算;直角的特征
【解析】【解答】 锐角的度数小于90度,大于90度而小于180度的角叫做钝角,90度的角是直角,1个周角=2个平角=4个直角。
故答案为:90;90;90;2;4。
【分析】根据角的分类:0°<锐角<90°,直角=90°,90°<钝角<180°,锐角<直角<钝角,平角=180°,周角=360°,据此解答。
10.下图中,直线是 ,射线是 ,线段是 。
【答案】②;①⑥;③
【知识点】线段、直线、射线的认识及表示
【解析】【解答】 观察图可知,直线是②,射线是①⑥,线段是③。
故答案为:②;①⑥;③。
【分析】此题主要考查了线段、直线和射线的特征, 直线、射线、线段都是直的,线段有两个端点,长度有限,不能向两端无限延长;射线有一个端点,长度无限,可以向一端无限延长;直线没有端点,长度无限,可以向两端无限延长,据此解答。
二、判断(共10分)
11.左图中,∠1=140°。( )
【答案】(1)正确
【知识点】角的度量(计算)
【解析】【解答】观察可知,这个角是140°的角,原题说法正确。
故答案为:正确。
【分析】用量角器量角的方法:把量角器放在角的上面,使量角器的中心与角的顶点重合,0刻度线与角的一条边重合,角的另一条边所指的量角器上的刻度就是这个角的度数,据此判断。
12.用一副三角尺可以拼成105°的角。( )
【答案】(1)正确
【知识点】角的度量(计算)
【解析】【解答】60°+45°=105°,此题说法正确。
故答案为:正确。
【分析】一副三角尺上的角有90°,60°,30°和45°,利用一副三角尺可以画出:15°、30°、45°、60°、75°、90°、105°、120°、135°、150°、165°、180°的角,据此判断。
13.(2023四上·江陵期末)周角只有一条边。( )
【答案】(1)错误
【知识点】平角、周角的特征
【解析】【解答】解:周角有两条边。
故答案为:错误。
【分析】周角有两条边,只是周角的这两条边重合在了一起。
14.从一点出发可以画出无数个角。( )
【答案】(1)正确
【知识点】角的初步认识
【解析】【解答】 从一点出发可以画出无数个角,原题说法正确。
故答案为:正确。
【分析】 根据角的定义:由一个点出发的两条射线组成的图形叫角,据此判断。
15.不垂直的两条直线一定互相平行。( )
【答案】(1)错误
【知识点】平行的特征及性质;垂直的特征及性质
【解析】【解答】 同一平面内不垂直的两条直线可能是相交或平行,原题说法错误。
故答案为:错误。
【分析】 同一平面内两条直线有两种关系:相交和平行,而垂直是相交之中的一种特殊关系,普通的相交两直线也不平行,据此判断。
三、选择(共10分)
16.将线段的一端无限延长得到的是( )。
A.直线 B.射线 C.线段 D.无法确定
【答案】B
【知识点】线段、直线、射线的认识及表示
【解析】【解答】 将线段的一端无限延长得到的是射线。
故答案为:B。
【分析】此题主要考查了线段、直线和射线的特征, 直线、射线、线段都是直的,线段有两个端点,长度有限,不能向两端无限延长;射线有一个端点,长度无限,可以向一端无限延长;直线没有端点,长度无限,可以向两端无限延长,据此解答。
17.一个直角、一个锐角可以拼成一个( )。
A.钝角 B.平角 C.周角
【答案】A
【知识点】锐角、钝角的特征;直角的特征
【解析】【解答】 一个直角、一个锐角可以拼成一个钝角。
故答案为:A。
【分析】角的分类:0°<锐角<90°,直角=90°,90°<钝角<180°,锐角<直角<钝角,平角=180°,周角=360°,据此解答。
18.在同一个平面内,不相交的两条直线一定( )。
A.相交 B.平行 C.相交或平行
【答案】B
【知识点】平行的特征及性质
【解析】【解答】 在同一个平面内,不相交的两条直线一定平行。
故答案为:B。
【分析】同一平面内两条直线有两种关系:相交和平行,而垂直是相交之中的一种特殊关系,普通的相交两直线也不平行,据此解答。
19.一个长方形中有( )组线段是互相垂直的。
A.2 B.3 C.4
【答案】C
【知识点】垂直的特征及性质
【解析】【解答】 一个长方形中有4组线段是互相垂直的。
故答案为:C。
【分析】长方形的4个角是直角,相邻的两条线段互相垂直,据此解答。
20.过直线外一点可以画( )条这条直线的垂线。
A.1 B.无数 C.2
【答案】A
【知识点】作直线的垂线
【解析】【解答】 过直线外一点可以画1条这条直线的垂线。
故答案为:A。
【分析】此题主要考查了作垂线的知识,用三角尺过直线外一点画已知直线垂线的方法:①把三角尺的一条直角边与已知直线重合;②沿着直线移动三角尺,使三角尺的另一条直角边通过直线外的点,沿这条直角边画一条直线;③在垂足处标出垂直符号,据此解答。
四、按要求做题(共26分)
21.先写出每个钟面上的时间,再量一量钟面上的分针和时针所组成的角的度数。
,
,
,
,
【答案】3:00;90°;6:00;180°;4:00;120°;7:00;150°
【知识点】角的度量(计算)
【解析】【解答】时针指向3,分针指向12,此时是3:00,时针和分针组成的角是90°;
时针指向6,分针指向12,此时是6:00,时针和分针组成的角是180°;
时针指向4,分针指向12,此时是4:00,时针和分针组成的角是120°;
时针指向7,分针指向12,此时是7:00,时针和分针组成的角是150°。
故答案为:3:00;90°;6:00;180°;4:00;120°;7:00;150°。
【分析】钟面上,分针指向12,时针指向几,就是几时整;
钟面被12个数字平均分成12大格,每个大格所对的圆心角是360°÷12=30°,据此解答。
22.把下面这些角分别填入适当的圈里
89° 26° 150° 37° 20° 30°
145° 47° 90° 130° 87° 101°
【答案】解:锐角:89°,26°,37°,20°,30°,47°,87°
钝角:150°,145°,130°,101°
直角:90°
【知识点】锐角、钝角的特征;直角的特征
【解析】【分析】角的分类:0°<锐角<90°,直角=90°,90°<钝角<180°,锐角<直角<钝角,平角=180°,周角=360°,据此解答。
23.火眼金睛辨图形
垂直的有: 平行的有:
【答案】(1)(3);(2)(6)
【知识点】平行的特征及性质;垂直的特征及性质
【解析】【解答】 垂直的有:(1)、(3), 平行的有:(2)、(6)。
故答案为:(1)(3);(2)(6)。
【分析】同一平面内两条直线有两种关系:相交和平行,而垂直是相交之中的一种特殊关系,普通的相交两直线也不平行,据此判断。
五、操作题(共20分)
24.过A点画一条射线,然后在这条射线上截取一段1厘米长的线段。
【答案】
【知识点】线段、直线、射线的认识及表示
【解析】【分析】从A点向一边延伸,画出一条射线,然后可以把A点当一个端点,量出1厘米,找到另一个端点,两个端点之间的部分就是1厘米的线段。
25.过A点画出已知直线的垂线。
(1)
(2)
【答案】(1)
(2)
【知识点】作直线的垂线
【解析】【分析】(1)用三角尺过直线上一点画已知直线垂线的方法:①把三角尺的一条直角边与已知直线重合;②沿着直线移动三角尺,使三角尺的直角顶点和直线上的已知点重合;③从直角的顶点起沿三角尺的另一条直角边画一条直线;④在垂足处标出垂直符号;
(2)用三角尺过直线外一点画已知直线垂线的方法:①把三角尺的一条直角边与已知直线重合;②沿着直线移动三角尺,使三角尺的另一条直角边通过直线外的点,沿这条直角边画一条直线;③在垂足处标出垂直符号。
26.过B点画出已知直线的平行线。
【答案】
【知识点】平行的特征及性质
【解析】【分析】过直线外一点画已知直线平行线的方法:把三角板的一条直角边与已知直线重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知直线重合的直角边和直线外的点重合,过点沿三角板的直角边画直线即可。
27.用量角器画出下面度数的角。
35°
130°
【答案】
【知识点】根据度数画角
【解析】【分析】用量角器画角的方法:①画出一条射线,用量角器的中心点和射线的端点重合,0刻度线与射线重合;②在量角器上找出所要画的角的点,点上点;③以射线的端点过刚画出的点,画出射线即可,据此作图即可。
28.在下面点子图上分别画出一个锐角、一个直角和一个钝角。
【答案】
【知识点】锐角、钝角的特征;直角的特征
【解析】【分析】角的分类:0°<锐角<90°,直角=90°,90°<钝角<180°,锐角<直角<钝角,平角=180°,周角=360°,据此作图。
六、解决问题(共15分)
29.下图中,∠2=60°,你能求出其他各角的度数吗
【答案】解:∠1=180°-60°=120°
∠3=180°-60°=120°
∠4=180°-120°=60°
【知识点】角的度量(计算)
【解析】【分析】观察图可知,对折后∠2、∠1和对折后与∠1相等的角,组成一个内角,长方形的4个内角都是90°,长方形的四个内角都相等,据此解答。
30.如图,王大爷家到市集的路有3条,王大爷去市集走哪条路最近,为什么
【答案】解:②最近,两点间线段最短。
【知识点】最短路线问题
【解析】【分析】观察图可知,从王大爷家到市集的路有3条,其中两点之间线段最短,据此判断哪条路最近。
31.村民要铺一条石子路到公路,怎样修最近 请你在图上画出来,并说明理由
【答案】解:
点到直线的垂线段最短。
【知识点】最短路线问题
【解析】【分析】用三角尺过直线外一点画已知直线垂线的方法:①把三角尺的一条直角边与已知直线重合;②沿着直线移动三角尺,使三角尺的另一条直角边通过直线外的点,沿这条直角边画一条直线;③在垂足处标出垂直符号,据此作图;
点到直线的垂线中,垂线段距离最短。
七、附加题(共10分)
32.长方形的一个角折叠后如下图所示。
已知∠1=32°,求∠2的度数。
【答案】解:90°-32°×2=26°
答:∠2的度数为26°。
【知识点】角的度量(计算)
【解析】【分析】观察图可知,对折后∠2、∠1和对折后与∠1相等的角,组成一个内角,长方形的4个内角都是90°,长方形的四个内角都相等,据此列式解答。
北师大版2023年数学四年级上册第二单元过关检测A卷
一、填空(共19分)
1.线段有 个端点;射线有 个端点;直线 端点。
2.行人横穿马路要走互相 的白色斑马线。
3.两条互相垂直的直线的夹角是 。
4.手电筒和太阳射出来的光线,都可以看成是 。
5.两点之间可以画无数条线,其中 最短。
6.把一张长方形纸沿同一方向对折两次,打开后折痕互相 。
7.把一个半圆平均分成 份,其中的1份所对的角的大小叫做1°。
8.时针从中午12点走到晚上12点,正好形成 度角,是 角。
9.锐角的度数小于 度,大于 度而小于180度的角叫做钝角, 度的角是直角,1个周角= 个平角= 个直角。
10.下图中,直线是 ,射线是 ,线段是 。
二、判断(共10分)
11.左图中,∠1=140°。( )
12.用一副三角尺可以拼成105°的角。( )
13.(2023四上·江陵期末)周角只有一条边。( )
14.从一点出发可以画出无数个角。( )
15.不垂直的两条直线一定互相平行。( )
三、选择(共10分)
16.将线段的一端无限延长得到的是( )。
A.直线 B.射线 C.线段 D.无法确定
17.一个直角、一个锐角可以拼成一个( )。
A.钝角 B.平角 C.周角
18.在同一个平面内,不相交的两条直线一定( )。
A.相交 B.平行 C.相交或平行
19.一个长方形中有( )组线段是互相垂直的。
A.2 B.3 C.4
20.过直线外一点可以画( )条这条直线的垂线。
A.1 B.无数 C.2
四、按要求做题(共26分)
21.先写出每个钟面上的时间,再量一量钟面上的分针和时针所组成的角的度数。
,
,
,
,
22.把下面这些角分别填入适当的圈里
89° 26° 150° 37° 20° 30°
145° 47° 90° 130° 87° 101°
23.火眼金睛辨图形
垂直的有: 平行的有:
五、操作题(共20分)
24.过A点画一条射线,然后在这条射线上截取一段1厘米长的线段。
25.过A点画出已知直线的垂线。
(1)
(2)
26.过B点画出已知直线的平行线。
27.用量角器画出下面度数的角。
35°
130°
28.在下面点子图上分别画出一个锐角、一个直角和一个钝角。
六、解决问题(共15分)
29.下图中,∠2=60°,你能求出其他各角的度数吗
30.如图,王大爷家到市集的路有3条,王大爷去市集走哪条路最近,为什么
31.村民要铺一条石子路到公路,怎样修最近 请你在图上画出来,并说明理由
七、附加题(共10分)
32.长方形的一个角折叠后如下图所示。
已知∠1=32°,求∠2的度数。
答案解析部分
1.【答案】2;1;无
【知识点】线段、直线、射线的认识及表示
【解析】【解答】线段有2个端点,射线有1个,直线无端点。
【分析】按照端点区分,线分为直线、线段、射线。本题考查线的认识。
2.【答案】平行
【知识点】平行的特征及性质
【解析】【解答】白色斑马线是互相平行的。
故答案为:平行。
【分析】同一平面内永不相交的两条直线互相平行,根据生活经验可知,白色斑马线是互相平行的线。
3.【答案】直角
【知识点】垂直的特征及性质
【解析】【解答】 两条互相垂直的直线的夹角是直角。
故答案为:直角。
【分析】两直线相交所组成的角为直角时,称它们互相垂直,其中一条直线叫做另一条直线的垂线;如果两直线互相垂直,则它们相交所组成的角为直角。
4.【答案】射线
【知识点】线段、直线、射线的认识及表示
【解析】【解答】 手电筒和太阳射出来的光线,都可以看成是射线。
故答案为:射线。
【分析】此题主要考查了线段、直线和射线的特征, 直线、射线、线段都是直的,线段有两个端点,长度有限,不能向两端无限延长;射线有一个端点,长度无限,可以向一端无限延长;直线没有端点,长度无限,可以向两端无限延长,据此解答。
5.【答案】线段
【知识点】两点间的距离及应用
【解析】【解答】 两点之间可以画无数条线,其中线段最短。
故答案为:线段。
【分析】根据对线段的认识可知,两点之间线段最短。
6.【答案】平行
【知识点】平行的特征及性质
【解析】【解答】 把一张长方形纸沿同一方向对折两次,打开后折痕互相平行。
故答案为:平行。
【分析】在同一平面内永不相交的两条直线互相平行,据此可以动手沿同一方向对折长方形两次,观察打开后的折痕。
7.【答案】180
【知识点】角的概念及表示方法
【解析】【解答】 把一个半圆平均分成180份,其中的1份所对的角的大小叫做1°。
故答案为:180。
【分析】根据对角的认识可知:度量角的单位通常用1°,人们将圆平均分成360份,其中1份所对的角的大小叫做1度,记作1°,把1°的角作为角的单位,由此解答即可。
8.【答案】360;周
【知识点】角的度量(计算);平角、周角的特征
【解析】【解答】 时针从中午12点走到晚上12点,正好形成360度角,是周角。
故答案为:360;周。
【分析】时针从中午12点走到晚上12点,正好转了一圈,也就是旋转了360°,周角=360°,据此解答。
9.【答案】90;90;90;2;4
【知识点】锐角、钝角的特征;平角、周角的特征;角的类型及换算;直角的特征
【解析】【解答】 锐角的度数小于90度,大于90度而小于180度的角叫做钝角,90度的角是直角,1个周角=2个平角=4个直角。
故答案为:90;90;90;2;4。
【分析】根据角的分类:0°<锐角<90°,直角=90°,90°<钝角<180°,锐角<直角<钝角,平角=180°,周角=360°,据此解答。
10.【答案】②;①⑥;③
【知识点】线段、直线、射线的认识及表示
【解析】【解答】 观察图可知,直线是②,射线是①⑥,线段是③。
故答案为:②;①⑥;③。
【分析】此题主要考查了线段、直线和射线的特征, 直线、射线、线段都是直的,线段有两个端点,长度有限,不能向两端无限延长;射线有一个端点,长度无限,可以向一端无限延长;直线没有端点,长度无限,可以向两端无限延长,据此解答。
11.【答案】(1)正确
【知识点】角的度量(计算)
【解析】【解答】观察可知,这个角是140°的角,原题说法正确。
故答案为:正确。
【分析】用量角器量角的方法:把量角器放在角的上面,使量角器的中心与角的顶点重合,0刻度线与角的一条边重合,角的另一条边所指的量角器上的刻度就是这个角的度数,据此判断。
12.【答案】(1)正确
【知识点】角的度量(计算)
【解析】【解答】60°+45°=105°,此题说法正确。
故答案为:正确。
【分析】一副三角尺上的角有90°,60°,30°和45°,利用一副三角尺可以画出:15°、30°、45°、60°、75°、90°、105°、120°、135°、150°、165°、180°的角,据此判断。
13.【答案】(1)错误
【知识点】平角、周角的特征
【解析】【解答】解:周角有两条边。
故答案为:错误。
【分析】周角有两条边,只是周角的这两条边重合在了一起。
14.【答案】(1)正确
【知识点】角的初步认识
【解析】【解答】 从一点出发可以画出无数个角,原题说法正确。
故答案为:正确。
【分析】 根据角的定义:由一个点出发的两条射线组成的图形叫角,据此判断。
15.【答案】(1)错误
【知识点】平行的特征及性质;垂直的特征及性质
【解析】【解答】 同一平面内不垂直的两条直线可能是相交或平行,原题说法错误。
故答案为:错误。
【分析】 同一平面内两条直线有两种关系:相交和平行,而垂直是相交之中的一种特殊关系,普通的相交两直线也不平行,据此判断。
16.【答案】B
【知识点】线段、直线、射线的认识及表示
【解析】【解答】 将线段的一端无限延长得到的是射线。
故答案为:B。
【分析】此题主要考查了线段、直线和射线的特征, 直线、射线、线段都是直的,线段有两个端点,长度有限,不能向两端无限延长;射线有一个端点,长度无限,可以向一端无限延长;直线没有端点,长度无限,可以向两端无限延长,据此解答。
17.【答案】A
【知识点】锐角、钝角的特征;直角的特征
【解析】【解答】 一个直角、一个锐角可以拼成一个钝角。
故答案为:A。
【分析】角的分类:0°<锐角<90°,直角=90°,90°<钝角<180°,锐角<直角<钝角,平角=180°,周角=360°,据此解答。
18.【答案】B
【知识点】平行的特征及性质
【解析】【解答】 在同一个平面内,不相交的两条直线一定平行。
故答案为:B。
【分析】同一平面内两条直线有两种关系:相交和平行,而垂直是相交之中的一种特殊关系,普通的相交两直线也不平行,据此解答。
19.【答案】C
【知识点】垂直的特征及性质
【解析】【解答】 一个长方形中有4组线段是互相垂直的。
故答案为:C。
【分析】长方形的4个角是直角,相邻的两条线段互相垂直,据此解答。
20.【答案】A
【知识点】作直线的垂线
【解析】【解答】 过直线外一点可以画1条这条直线的垂线。
故答案为:A。
【分析】此题主要考查了作垂线的知识,用三角尺过直线外一点画已知直线垂线的方法:①把三角尺的一条直角边与已知直线重合;②沿着直线移动三角尺,使三角尺的另一条直角边通过直线外的点,沿这条直角边画一条直线;③在垂足处标出垂直符号,据此解答。
21.【答案】3:00;90°;6:00;180°;4:00;120°;7:00;150°
【知识点】角的度量(计算)
【解析】【解答】时针指向3,分针指向12,此时是3:00,时针和分针组成的角是90°;
时针指向6,分针指向12,此时是6:00,时针和分针组成的角是180°;
时针指向4,分针指向12,此时是4:00,时针和分针组成的角是120°;
时针指向7,分针指向12,此时是7:00,时针和分针组成的角是150°。
故答案为:3:00;90°;6:00;180°;4:00;120°;7:00;150°。
【分析】钟面上,分针指向12,时针指向几,就是几时整;
钟面被12个数字平均分成12大格,每个大格所对的圆心角是360°÷12=30°,据此解答。
22.【答案】解:锐角:89°,26°,37°,20°,30°,47°,87°
钝角:150°,145°,130°,101°
直角:90°
【知识点】锐角、钝角的特征;直角的特征
【解析】【分析】角的分类:0°<锐角<90°,直角=90°,90°<钝角<180°,锐角<直角<钝角,平角=180°,周角=360°,据此解答。
23.【答案】(1)(3);(2)(6)
【知识点】平行的特征及性质;垂直的特征及性质
【解析】【解答】 垂直的有:(1)、(3), 平行的有:(2)、(6)。
故答案为:(1)(3);(2)(6)。
【分析】同一平面内两条直线有两种关系:相交和平行,而垂直是相交之中的一种特殊关系,普通的相交两直线也不平行,据此判断。
24.【答案】
【知识点】线段、直线、射线的认识及表示
【解析】【分析】从A点向一边延伸,画出一条射线,然后可以把A点当一个端点,量出1厘米,找到另一个端点,两个端点之间的部分就是1厘米的线段。
25.【答案】(1)
(2)
【知识点】作直线的垂线
【解析】【分析】(1)用三角尺过直线上一点画已知直线垂线的方法:①把三角尺的一条直角边与已知直线重合;②沿着直线移动三角尺,使三角尺的直角顶点和直线上的已知点重合;③从直角的顶点起沿三角尺的另一条直角边画一条直线;④在垂足处标出垂直符号;
(2)用三角尺过直线外一点画已知直线垂线的方法:①把三角尺的一条直角边与已知直线重合;②沿着直线移动三角尺,使三角尺的另一条直角边通过直线外的点,沿这条直角边画一条直线;③在垂足处标出垂直符号。
26.【答案】
【知识点】平行的特征及性质
【解析】【分析】过直线外一点画已知直线平行线的方法:把三角板的一条直角边与已知直线重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知直线重合的直角边和直线外的点重合,过点沿三角板的直角边画直线即可。
27.【答案】
【知识点】根据度数画角
【解析】【分析】用量角器画角的方法:①画出一条射线,用量角器的中心点和射线的端点重合,0刻度线与射线重合;②在量角器上找出所要画的角的点,点上点;③以射线的端点过刚画出的点,画出射线即可,据此作图即可。
28.【答案】
【知识点】锐角、钝角的特征;直角的特征
【解析】【分析】角的分类:0°<锐角<90°,直角=90°,90°<钝角<180°,锐角<直角<钝角,平角=180°,周角=360°,据此作图。
29.【答案】解:∠1=180°-60°=120°
∠3=180°-60°=120°
∠4=180°-120°=60°
【知识点】角的度量(计算)
【解析】【分析】观察图可知,对折后∠2、∠1和对折后与∠1相等的角,组成一个内角,长方形的4个内角都是90°,长方形的四个内角都相等,据此解答。
30.【答案】解:②最近,两点间线段最短。
【知识点】最短路线问题
【解析】【分析】观察图可知,从王大爷家到市集的路有3条,其中两点之间线段最短,据此判断哪条路最近。
31.【答案】解:
点到直线的垂线段最短。
【知识点】最短路线问题
【解析】【分析】用三角尺过直线外一点画已知直线垂线的方法:①把三角尺的一条直角边与已知直线重合;②沿着直线移动三角尺,使三角尺的另一条直角边通过直线外的点,沿这条直角边画一条直线;③在垂足处标出垂直符号,据此作图;
点到直线的垂线中,垂线段距离最短。
32.【答案】解:90°-32°×2=26°
答:∠2的度数为26°。
【知识点】角的度量(计算)
【解析】【分析】观察图可知,对折后∠2、∠1和对折后与∠1相等的角,组成一个内角,长方形的4个内角都是90°,长方形的四个内角都相等,据此列式解答。