试卷答案
寻你做寻,想你所想

2023年宁夏石嘴山市平罗六中中考数学模拟试卷(一)(含解析)

2023年宁夏石嘴山市平罗六中中考数学模拟试卷(一)
一、选择题(每题3分,共24分)
1.2013﹣2018年我国与“一带一路”沿线国家货物贸易总额超过60000亿元,将60000用科学记数法表示为(  )
A.6×104 B.0.6×105 C.6×106 D.60×103
2.下列运算正确的是(  )
A.3a2﹣2a2=a2 B.﹣(2a)2=﹣2a2
C.(a﹣b)2=a2﹣b2 D.﹣2(a﹣1)=﹣2a+1
3.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是(  )
A. B. C. D.
4.不等式组的解集是x>2,则m的取值范围是(  )
A.m≤2 B.m≥2 C.m≤1 D.m>1
5.如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为(  )
A.20° B.30° C.35° D.55°
6.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是(  )
A.12 B.9 C.13 D.12或9
7.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为(  )
A.5πcm2 B.10πcm2 C.15πcm2 D.20πcm2
8.已知ab<0,一次函数y=ax﹣b与反比例函数y=在同一平面直角坐标系中的图象可能(  )
A. B.
C. D.
二、填空题(每题3分,共24分)
9.分解因式:3ax2﹣3ay2=   .
10.计算:=   .
11.一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同.再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为,则盒子中原有的白球的个数为   
12.圆锥的底面半径r=3,高h=4,则圆锥的全面积是    .
13.如图,C、D两点在以AB为直径的圆上,AB=2,∠ACD=30°,则AD=   .
14.如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为   .
15.在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B点,然后再沿北偏西30°方向走了500m到达目的地C点,求A、C两地之间的距离    .
16.如图,在斜边长为1的等腰直角三角形OAB中,作内接正方形A1B1D1C1;在等腰直角三角形OA1B1中作内接正方形A2B2D2C2;在等腰直角三角形OA2B2中作内接正方形A3B3D3C3;…;依次做下去,则第n个正方形AnBnDn n的边长是   .
三、解答题(17-22题每题6分,23、24每题8分,25、26每题10分,共72分)
17.先化简,再求值÷(x+2+),其中x=﹣1
18.解不等式组:

19.如图,正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0),A(4,1),B(4,4)均在格点上.
(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;
(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标.
20.某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.
类别 A B C D E
类型 新闻 体育 动画 娱乐 戏曲
人数 11 20 40 m 4
请你根据以上信息,回答下列问题:
(1)统计表中m的值为   ,统计图中n的值为   ,A类对应扇形的圆心角为   度;
(2)该校共有1500名学生,根据调查结果,估计该校最喜爱体育节目的学生人数;
(3)样本数据中最喜爱戏曲节目的有4人,其中仅有1名男生.从这4人中任选2名同学去观赏戏曲表演,请用树状图或列表求所选2名同学中有男生的概率.
21.一中双语举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生,已知购买2个甲种文具,1个乙种文具共需要花费35元,购买1个甲种文具,3个乙种文具共需要花费30元.
(1)求购买一个甲种文具,一个乙种文具各需多少钱?
(2)若学校计划购买这两种文具共120个,投入资金不少于955元,又不多于1000元,问有多少种购买方案?
22.如图,同学们利用所学知识去测量三江源某河段某处的宽度.小宇同学在A处观测对岸点C,测得∠CAD=45°,小英同学在距点A处60米远的B点测得∠CBD=30°,请根据这些数据算出河宽(精确到0.01米,≈1.414,≈1.732).
23.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.
(1)求证:四边形ABCD是菱形;
(2)若∠ADB=30°,BD=6,求AD的长.
24.如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D作DH⊥AC于点H.
(1)求证:H为CE的中点;
(2)若BC=10,cosC=,求AE的长.
25.如图,抛物线y=ax2+bx+c与坐标轴交点分别为A(﹣1,0),B(3,0),C(0,2),作直线BC.
(1)求抛物线的解析式;
(2)点P为抛物线上第一象限内一动点,过点P作PD⊥x轴于点D,设点P的横坐标为t(0<t<3),求△ABP的面积S与t的函数关系式;
(3)条件同(2),若△ODP与△COB相似,求点P的坐标.
26.如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角板的一边交CD于点F.另一边交CB的延长线于点G.
(1)观察猜想:线段EF与线段EG的数量关系是   ;
(2)探究证明:如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由;
(3)拓展延伸:如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求的值.
参考答案
一、选择题(每题3分,共24分)
1.2013﹣2018年我国与“一带一路”沿线国家货物贸易总额超过60000亿元,将60000用科学记数法表示为(  )
A.6×104 B.0.6×105 C.6×106 D.60×103
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.
解:60000=6×104,
故选:A.
【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2.下列运算正确的是(  )
A.3a2﹣2a2=a2 B.﹣(2a)2=﹣2a2
C.(a﹣b)2=a2﹣b2 D.﹣2(a﹣1)=﹣2a+1
【分析】根据合并同类项法则、单项式的乘方、完全平方公式和单项式乘多项式法则逐一计算可得.
解:A.3a2﹣2a2=a2,此选项计算正确;
B.﹣(2a)2=﹣4a2,此选项计算错误;
C.(a﹣b)2=a2﹣2ab+b2,此选项计算错误;
D.﹣2(a﹣1)=﹣2a+2,此选项计算错误;
故选:A.
【点评】本题主要考查幂的乘方与积的乘方,解题的关键是掌握合并同类项法则、单项式的乘方、完全平方公式和单项式乘多项式法则.
3.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是(  )
A. B. C. D.
【分析】根据俯视图即从物体的上面观察得到的视图,进而得出答案.
解:该几何体的俯视图是:

故选:A.
【点评】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.
4.不等式组的解集是x>2,则m的取值范围是(  )
A.m≤2 B.m≥2 C.m≤1 D.m>1
【分析】根据解不等式,可得每个不等式的解集,再根据每个不等式的解集,可得不等式组的解集,根据不等式的解集,可得答案.
解:∵不等式组的解集是x>2,
解不等式①得x>2,
解不等式②得x>m+1,
不等式组的解集是x>2,
∴不等式,①解集是不等式组的解集,
∴m+1≤2,
m≤1,
故选:C.
【点评】本题考查了不等式组的解集,不等式组中的两个不等式的解集都是大于,不等式组的解集大于大的,不等式②的解集是不等式组的解集.
5.如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为(  )
A.20° B.30° C.35° D.55°
【分析】根据矩形的性质,可得∠ABD=35°,∠DBC=55°,根据折叠可得∠DBC'=∠DBC=55°,最后根据∠2=∠DBC'﹣∠DBA进行计算即可.
解:∵∠1=35°,CD∥AB,
∴∠ABD=35°,∠DBC=55°,
由折叠可得∠DBC'=∠DBC=55°,
∴∠2=∠DBC'﹣∠DBA=55°﹣35°=20°,
故选:A.
【点评】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∠DBC′和∠DBA的度数.
6.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是(  )
A.12 B.9 C.13 D.12或9
【分析】求出方程的解,即可得出三角形的边长,再求出即可.
解:x2﹣7x+10=0,
(x﹣2)(x﹣5)=0,
x﹣2=0,x﹣5=0,
x1=2,x2=5,
①等腰三角形的三边是2,2,5
∵2+2<5,
∴不符合三角形三边关系定理,此时不符合题意;
②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;
即等腰三角形的周长是12.
故选:A.
【点评】本题考查了等腰三角形性质、解一元二次方程、三角形三边关系定理的应用等知识,关键是求出三角形的三边长.
7.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为(  )
A.5πcm2 B.10πcm2 C.15πcm2 D.20πcm2
【分析】根据已知条件得到四边形ABCD是矩形,求得图中阴影部分的面积=S扇形AOD+S扇形BOC=2S扇形AOD,根据等腰三角形的性质得到∠BAC=∠ABO=36°,由圆周角定理得到∠AOD=72°,于是得到结论.
解:∵AC与BD是⊙O的两条直径,
∴∠ABC=∠ADC=∠DAB=∠BCD=90°,
∴四边形ABCD是矩形,
∴△ABO与△CDO的面积的和=△AOD与△BOC的面积的和,
∴图中阴影部分的面积=S扇形AOD+S扇形BOC=2S扇形AOD,
∵OA=OB,
∴∠BAC=∠ABO=36°,
∴∠AOD=72°,
∴图中阴影部分的面积=2×=10π,
故选:B.
【点评】本题考查了扇形的面积,矩形的判定和性质,圆周角定理,熟练掌握扇形的面积公式是解题的关键.
8.已知ab<0,一次函数y=ax﹣b与反比例函数y=在同一平面直角坐标系中的图象可能(  )
A. B.
C. D.
【分析】根据反比例函数图象确定b的符号,结合已知条件求得a的符号,由a、b的符号确定一次函数图象所经过的象限.
解:若反比例函数y=经过第一、三象限,则a>0.所以b<0.则一次函数y=ax﹣b的图象应该经过第一、二、三象限;
若反比例函数y=经过第二、四象限,则a<0.所以b>0.则一次函数y=ax﹣b的图象应该经过第二、三、四象限.
故选项A正确;
故选:A.
【点评】本题考查了反比例函数的图象性质和一次函数函数的图象性质,要掌握它们的性质才能灵活解题.
二、填空题(每题3分,共24分)
9.分解因式:3ax2﹣3ay2= 3a(x+y)(x﹣y) .
【分析】先提公因式,再运用平方差公式.
解:原式=3a(x2﹣y2)
=3a(x+y)(x﹣y).
故答案为:3a(x+y)(x﹣y).
【点评】本题考查了多项式的因式分解,掌握提公因式法和平方差公式是解决本题的关键.
10.计算:= ﹣3+ .
【分析】先计算负整数指数幂,再代入特殊角的函数值化简绝对值,最后算加减.
解:
=﹣2﹣|1﹣|
=﹣2﹣(1﹣)
=﹣2﹣1+
=﹣3+.
故答案为:﹣3+.
【点评】本题考查了实数的混合运算,掌握负整数指数幂的意义、特殊角的特殊值、绝对值的意义等知识点是解决本题的关键.
11.一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同.再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为,则盒子中原有的白球的个数为 20 
【分析】设盒子中原有的白球的个数为x个,根据题意列出分式方程,解此分式方程即可求得答案.
解:设盒子中原有的白球的个数为x个,
根据题意得:=,
解得:x=20,
经检验:x=20是原分式方程的解;
∴盒子中原有的白球的个数为20个.
故答案为:20;
【点评】此题考查了概率公式的应用、分式方程的应用.用到的知识点为:概率=所求情况数与总情况数之比.
12.圆锥的底面半径r=3,高h=4,则圆锥的全面积是  24π .
【分析】先求圆锥的母线,再根据公式求侧面积.
解:由勾股定理得:母线l==5,
∴S侧= 2πr l=πrl=π×3×5=15π,
∵底面积为π×32=9π,
∴圆锥的全面积是15π+9π=24π.
故答案为:24π.
【点评】本题考查了圆锥的计算,熟练掌握圆锥的母线和侧面积公式是关键.
13.如图,C、D两点在以AB为直径的圆上,AB=2,∠ACD=30°,则AD= 1 .
【分析】利用圆周角定理得到∠ADB=90°,∠B=∠ACD=30°,然后根据含30度的直角三角形三边的关系求AD的长.
解:∵AB为直径,
∴∠ADB=90°,
∵∠B=∠ACD=30°,
∴AD=AB=×2=1.
故答案为1.
【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
14.如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为 (,﹣) .
【分析】由折叠的性质得到一对角相等,再由矩形对边平行得到一对内错角相等,等量代换及等角对等边得到BE=OE,利用AAS得到三角形OED与三角形BEA全等,由全等三角形对应边相等得到DE=AE,过D作DF垂直于OE,利用勾股定理及面积法求出DF与OF的长,即可确定出D坐标.
解:由折叠得:∠CBO=∠DBO,
∵矩形ABCO,
∴BC∥OA,
∴∠CBO=∠BOA,
∴∠DBO=∠BOA,
∴BE=OE,
在△ODE和△BAE中,

∴△ODE≌△BAE(AAS),
∴AE=DE,
设DE=AE=x,则有OE=BE=8﹣x,
在Rt△ODE中,根据勾股定理得:42+x2=(8﹣x)2,
解得:x=3,即OE=5,DE=3,
过D作DF⊥OA,
∵S△OED=OD DE=OE DF,
∴DF=,OF==,
则D(,﹣).
故答案为:(,﹣)
【点评】此题考查了翻折变化(折叠问题),坐标与图形变换,以及矩形的性质,熟练掌握折叠的性质是解本题的关键.
15.在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B点,然后再沿北偏西30°方向走了500m到达目的地C点,求A、C两地之间的距离  1000m .
【分析】过B点作直线EF∥AD,根据平行线的性质,平角的定义,勾股定理即可得到结论.
解:如图,过B点作直线EF∥AD,
∴∠DAB=∠ABE=60°,
∵∠FBC=30°,
∴∠ABC=180°﹣∠AEF﹣∠FBC=180°﹣60°﹣30°=90°,
∴△ABC为直角三角形.
∵AB=500m,BC=500m,
∴AC===1000(m),
故答案为:1000m.
【点评】本题考查了解直角三角形的应用﹣方向角问题,平行线的性质,平角的定义等知识.作出辅助线求出∠ABC为90°是解题的关键.
16.如图,在斜边长为1的等腰直角三角形OAB中,作内接正方形A1B1D1C1;在等腰直角三角形OA1B1中作内接正方形A2B2D2C2;在等腰直角三角形OA2B2中作内接正方形A3B3D3C3;…;依次做下去,则第n个正方形AnBnDn n的边长是  .
【分析】过O作OM垂直于AB,交AB于点M,交A1B1于点N,由三角形OAB与三角形OA1B1都为等腰直角三角形,得到M为AB的中点,N为A1B1的中点,根据直角三角形斜边上的中线等于斜边的一半可得出OM为AB的一半,由AB=1求出OM的长,再由ON为A1B1的一半,即为MN的一半,可得出ON与OM的比值,求出MN的长,即为第1个正方形的边长,同理求出第2个正方形的边长,依此类推即可得到第n个正方形的边长.
解:过O作OM⊥AB,交AB于点M,交A1B1于点N,如图所示:
∵A1B1∥AB,
∴ON⊥A1B1,
∵△OAB为斜边为1的等腰直角三角形,
∴OM=AB=,
又∵△OA1B1为等腰直角三角形,
∴ON=A1B1=MN,
∴ON:OM=1:3,
∴第1个正方形的边长A1C1=MN=OM=×=,
同理第2个正方形的边长A2C2=ON=×=,
则第n个正方形AnBnDn n的边长为:.
故答案为:.
【点评】此题考查了等腰直角三角形的性质,以及正方形的性质,属于一道规律型的题,熟练掌握等腰直角三角形的性质是解本题的关键.
三、解答题(17-22题每题6分,23、24每题8分,25、26每题10分,共72分)
17.先化简,再求值÷(x+2+),其中x=﹣1
【分析】先计算括号内分式的加法,再将除法转化为乘法,最后约分即可化简原式,继而将x的值代入计算可得.
解:原式=÷(+)
=÷

=,
当x=﹣1时,
原式=

=1﹣.
【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.
18.解不等式组:

【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.
解:,
解不等式①得:x≤2,
解不等式②得:x>﹣1,
则不等式组的解集为﹣1<x≤2.
【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
19.如图,正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0),A(4,1),B(4,4)均在格点上.
(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;
(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标.
【分析】(1)根据轴对称的性质即可画出△OAB关于y轴对称的△OA1B1;
(2)根据旋转的性质即可画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2.
解:(1)如图,△OA1B1即为所求,点A1的坐标为(﹣4,1);
(2)如图,△OA2B2即为所求;点A2的坐标为(1,﹣4).
【点评】本题考查了作图﹣旋转变换、作图﹣轴对称变换,解决本题的关键是掌握旋转和轴对称的性质.
20.某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.
类别 A B C D E
类型 新闻 体育 动画 娱乐 戏曲
人数 11 20 40 m 4
请你根据以上信息,回答下列问题:
(1)统计表中m的值为 25 ,统计图中n的值为 25 ,A类对应扇形的圆心角为 39.6 度;
(2)该校共有1500名学生,根据调查结果,估计该校最喜爱体育节目的学生人数;
(3)样本数据中最喜爱戏曲节目的有4人,其中仅有1名男生.从这4人中任选2名同学去观赏戏曲表演,请用树状图或列表求所选2名同学中有男生的概率.
【分析】(1)先根据B类别人数及其百分比求出总人数,再由各类别人数之和等于总人数求出m,继而由百分比概念得出n的值,用360°乘以A类别人数所占比例即可得;
(2)利用样本估计总体思想求解可得,
(3)利用树状图可求概率.
解:(1)∵样本容量为20÷20%=100,
∴m=100﹣(11+20+40+4)=25,n%=×100%=25%,A类对应扇形的圆心角为360°×=39.6°,
故答案为:25、25、39.6.
(2)1500×=300(人)
答:该校最喜爱体育节目的人数约有300人;
(3)画树状图如下:
共有12种情况,所选2名同学中有男生的有6种结果,
所以所选2名同学中有男生的概率为.
【点评】本题考查了扇形统计图,条形统计图,树状图等知识点,能正确画出树状图是解此题的关键.
21.一中双语举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生,已知购买2个甲种文具,1个乙种文具共需要花费35元,购买1个甲种文具,3个乙种文具共需要花费30元.
(1)求购买一个甲种文具,一个乙种文具各需多少钱?
(2)若学校计划购买这两种文具共120个,投入资金不少于955元,又不多于1000元,问有多少种购买方案?
【分析】(1)设购买一个甲种文具a元,一个乙种文具b元,根据“购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元”列方程组解答即可;
(2)根据题意列不等式组解答即可.
解:(1)设购买一个甲种文具a元,一个乙种文具b元,
由题意得:,
解得,
答:购买一个甲种文具15元,一个乙种文具5元;
(2)根据题意得:
955≤15x+5(120﹣x)≤1000,
解得35.5≤x≤40,
∵x是整数,
∴x=36,37,38,39,40.
∴有5种购买方案.
【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,列出不等式组.
22.如图,同学们利用所学知识去测量三江源某河段某处的宽度.小宇同学在A处观测对岸点C,测得∠CAD=45°,小英同学在距点A处60米远的B点测得∠CBD=30°,请根据这些数据算出河宽(精确到0.01米,≈1.414,≈1.732).
【分析】设河宽为未知数,那么可利用三角函数用河宽表示出AE、EB,然后根据BE﹣AE=60就能求得河宽.
解:过C作CE⊥AB于E,设CE=x米,
在Rt△AEC中:∠CAE=45°,AE=CE=x
在Rt△BCE中:∠CBE=30°,BE=CE=x,
∴x=x+60解之得:x=30+30≈81.96.
答:河宽约为81.96米.
【点评】此题主要考查了三角函数的概念和应用,解题关键是把实际问题转化为数学问题,抽象到三角形中,利用三角函数进行解答.
23.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.
(1)求证:四边形ABCD是菱形;
(2)若∠ADB=30°,BD=6,求AD的长.
【分析】(1)由平行线的性质和角平分线定义得出∠ABD=∠ADB,证出AB=AD,同理:AB=BC,得出AD=BC,证出四边形ABCD是平行四边形,即可得出结论;
(2)由菱形的性质得出AC⊥BD,OD=OB=BD=3,再由三角函数即可得出AD的长.
【解答】(1)证明:∵AE∥BF,
∴∠ADB=∠CBD,
又∵BD平分∠ABF,
∴∠ABD=∠CBD,
∴∠ABD=∠ADB,
∴AB=AD,
同理:AB=BC,
∴AD=BC,
∴四边形ABCD是平行四边形,
又∵AB=AD,
∴四边形ABCD是菱形;
(2)解:∵四边形ABCD是菱形,BD=6,
∴AC⊥BD,OD=OB=BD=3,
∵∠ADB=30°,
∴cos∠ADB==,
∴AD==2.
【点评】本题考查了菱形的判定与性质、平行线的性质、等腰三角形的判定、平行四边形的判定、三角函数等知识;熟练掌握菱形的判定与性质是解决问题的关键.
24.如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D作DH⊥AC于点H.
(1)求证:H为CE的中点;
(2)若BC=10,cosC=,求AE的长.
【分析】(1)连接DE,先利用圆内接四边形的性质以及平角定义可得∠B=∠DEC,再利用等腰三角形的性质可得∠B=∠C,从而可得∠C=∠DEC,进而可得DE=DC,然后利用等腰三角形的三线合一性质,即可解答;
(2)连接AD,根据直径所对的圆周角是直角可得∠ADB=90°,从而利用等腰三角形的三线合一性质可得CD=BC=5,然后分别在Rt△ADC中,利用锐角三角函数的定义求出AC的长,再Rt△CDH中,利用锐角三角函数的定义求出CH的长,从而求出CE的长,最后利用线段的和差关系,进行计算即可解答.
【解答】(1)证明:连接DE,
∵四边形ABDE是⊙O的内接四边形,
∴∠B+∠AED=180°,
∵∠AED+∠DEC=180°,
∴∠B=∠DEC,
∵AB=AC,
∴∠B=∠C,
∴∠C=∠DEC,
∴DE=DC,
∵DH⊥EC,
∴H为CE的中点;
(2)解:连接AD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∵AB=AC,
∴CD=BC=5,
在Rt△ADC中,cosC=,
∴AC===5,
在Rt△CDH中,CH=CD cosC=5×=,
∵H为CE的中点,
∴CE=2CH=2,
∴AE=AC﹣CE=3,
∴AE的长为3.
【点评】本题考查了圆周角定理,等腰三角形的性质,解直角三角形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.
25.如图,抛物线y=ax2+bx+c与坐标轴交点分别为A(﹣1,0),B(3,0),C(0,2),作直线BC.
(1)求抛物线的解析式;
(2)点P为抛物线上第一象限内一动点,过点P作PD⊥x轴于点D,设点P的横坐标为t(0<t<3),求△ABP的面积S与t的函数关系式;
(3)条件同(2),若△ODP与△COB相似,求点P的坐标.
【分析】(1)把A(﹣1,0),B(3,0),C(0,2)代入y=ax2+bx+c得到关于a、b、c的方程组,从而可求得a、b、c的值;
(2)设点P的坐标为(t,﹣t2+t+2),则DP=﹣t2+t+2,然后由点A和点B的坐标可得到AB=4,接下来,依据三角形的面积公式求解即可;
(3)当△ODP∽△COB时,=;当△ODP∽△BOC,则=,然后依据比例关系列出关于t的方程求解即可.
解:(1)把A(﹣1,0),B(3,0),C(0,2)代入y=ax2+bx+c得:,
解得:a=﹣,b=,c=2,
∴抛物线的解析式为y=﹣x2+x+2.
(2)设点P的坐标为(t,﹣t2+t+2).
∵A(﹣1,0),B(3,0),
∴AB=4.
∴S=AB PD=×4×(﹣t2+t+2)=﹣t2+t+4(0<t<3);
(3)当△ODP∽△COB时,=即=,
整理得:4t2+t﹣12=0,
解得:t=或t=(舍去).
∴OD=t=,DP=OD=,
∴点P的坐标为(,).
当△ODP∽△BOC,则=,即=,
整理得t2﹣t﹣3=0,
解得:t=或t=(舍去).
∴OD=t=,DP=OD=,
∴点P的坐标为(,).
综上所述点P的坐标为(,)或(,).
【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、三角形的面积公式、相似三角形的性质,依据相似三角形的性质列出关于t的方程是解题的关键.
26.如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角板的一边交CD于点F.另一边交CB的延长线于点G.
(1)观察猜想:线段EF与线段EG的数量关系是 EF=EG ;
(2)探究证明:如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由;
(3)拓展延伸:如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求的值.
【分析】(1)由∠GEB+∠BEF=90°,∠DEF+∠BEF=90°,可得∠DEF=∠GEB,又由正方形的性质,利用ASA得到△FED≌△GEB,得出EF=EG;
(2)过点E分别作BC、CD的垂线,垂足分别为H、P,然后利用ASA证明△FEI≌△GEH,根据全等三角形的性质证明结论;
(3)过点E分别作BC、CD的垂线,得到EM∥AB,EN∥AD,证明△CEN∽△CAD,△CEM∽△CAB,得到=,证得△GME∽△FNE,根据相似三角形的对应边成比例,即可求得答案.
解:(1)∵四边形ABCD为正方形,
∴AB=AD,∠BAD=90°,
∴∠GAF=∠BAD,
∴∠GAF﹣∠BAF=∠BAD﹣∠BAF,即∠GAB=∠FAD,
在△GAB和△FAD中,

∴△GAB≌△FAD(ASA),
∴AG=AF,即EF=EG,
故答案为:EF=EG;
(2)成立,
证明如下:如图2,过点E分别作BC、CD的垂线,垂足分别为H、I,
则EH=EI,∠HEI=90°,
∵∠GEH+∠HEF=90°,∠IEF+∠HEF=90°,
∴∠IEF=∠GEH,
在△FEI和△GEH中,

∴△FEI≌△GEH(ASA),
∴EF=EG;
(3)如图,过点E分别作BC、CD的垂线,垂足分别为M、N,
则∠MEN=90°,
∴EM∥AB,EN∥AD,
∴△CEN∽△CAD,△CEM∽△CAB,
∴,,
∴,即==,
∵∠NEF+∠FEM=∠GEM+∠FEM=90°,
∴∠GEM=∠FEN,又∠GME=∠FNE=90°,
∴△GME∽△FNE,
∴==.
【点评】本题考查的是相似三角形的判定和性质、全等三角形的判定和性质、正方形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.

转载请注明出处卷子答案网-一个不只有答案的网站 » 2023年宁夏石嘴山市平罗六中中考数学模拟试卷(一)(含解析)

分享:

相关推荐