专题:菱形的性质与判定
菱形的性质1
1、菱形具有而一般平行四边形不具有的性质是( )
A. 对角相等 B. 对边相等
C. 对角线互相垂直 D. 对角线相等
2、 菱形的周长为100cm,一条对角线长为14cm,它的面积是( )
A. 168cm2 B. 336cm2 C. 672cm2 D. 84cm2
3、下列语句中,错误的是( )
A. 菱形是轴对称图形,它有两条对称轴
B. 菱形的两组对边可以通过平移而相互得到
C. 菱形的两组对边可以通过旋转而相互得到
D. 菱形的相邻两边可以通过旋转而相互得到
4、菱形的两条对角线分别是6 cm,8 cm,则菱形的边长为_____,面积为______.
5、四边形ABCD是菱形,点O是两条对角线的交点,已知AB=5, AO=4,求对角线BD
和菱形ABCD的面积.
6、如图,在菱形ABCD中,∠ADC=120°,则BD:AC等于( ).
(A):2 (B):3
(C)1:2 (D):1
7、菱形ABCD的周长为20cm,两条对角线的比为3∶4,求菱形的面积。
8、如左下图,菱形ABCD的对角线AC、BD交于点O,且AC=16cm,BD=12cm,
求菱形ABCD的高DH。
9、如右上图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF的度数为 .
10、在菱形ABCD中,∠A与∠B的度数比为1:2,周长是48cm.求:
(1)两条对角线的长度;(2)菱形的面积.
11、如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是( )
A.M(5,0),N(8,4) B.M(4,0),N(8,4)
C.M(5,0),N(7,4) D.M(4,0),N(7,4)
12、菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为( )
A.3:1 B.4:1 C.5:1 D.6:1
13、如左下图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH= _________ .
14、如右上图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为 cm2.
15、如图,在菱形ABCD中,顶点A到边BC、CD的距离AE、AF都为5,
EF=6,那么,菱形ABCD的边长是_____
菱形的性质2
一、选择题
1.下列命题中,真命题是( )
A.对角线互相垂直且相等的四边形是菱形
B.有一组邻边相等的平行四边形是菱形
C.对角线互相平分且相等的四边形是菱形
D.对角线相等的四边形是菱形
2.菱形的周长为12cm,相邻两角之比为5:1,那么菱形对边间的距离是( )
A.6cm B.1.5cm C.3cm D.0.75cm
3.在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,(如图1)则∠EAF等于( )
A.75° B.60° C.45° D.30°
图1 图2
4.已知菱形ABCD中,AE⊥BC于E,若S菱形ABCD=24,且AE=6,则菱形的边长为( )
A.12 B.8 C.4 D.2
5.菱形的边长是2 cm,一条对角线的长是2 cm,则另一条对角线的长约是( )
A.4cm B.1cm C.3.4cm D.2cm
二、判断正误:(对的打“√”错的打“×”)
1.两组邻边分别相等的四边形是菱形.( )
2.一角为60°的平行四边形是菱形.( )
3.对角线互相垂直的四边形是菱形.( )
4.菱形的对角线互相垂直平分.( )
三、填空题
1.如图3,菱形ABCD中,AC、BD相交于O,若OD=AD,则四个内角为________.
图3 图4
2.若一条对角线平分平行四边形的一组对角,且一边长为a时,如图4,其他三边长为________;周长为________.
3.菱形ABCD中,AC、BD相交于O点,若∠OBC=∠BAC,则菱形的四个内角的度数为____________.
4.若菱形的两条对角线的比为3:4,且周长为20cm,则它的一组对边的距离等于_________cm,它的面积等于________cm2.
5.菱形ABCD中,如图5,∠BAD=120°,AB=10cm,则AC=________cm,BD=________ cm.
图5 图6
四、解答题
∠如图,在菱形ABCD中,AE⊥BC,E为垂足.且BE=CE,AB=2.求:
(1)BAD的度数;
(2)对角线AC的长及菱形ABCD的周长.
菱形的性质3
一.选择题(共4小题)
1.(如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是( )
A.M(5,0),N(8,4) B.M(4,0),N(8,4) C.M(5,0),N(7,4) D.M(4,0),N(7,4)
2.菱形的周长为4,一个内角为60°,则较短的对角线长为( )
A.2 B. C.1 D.
3.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为( )
A.3:1 B.4:1 C.5:1 D.6:1
4.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为( )
A.15 B. C.7.5 D.
二.填空题(共15小题)
5.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是 _________ cm2.
6.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH= _________ .
7.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为 cm2.
6题图 7题图 8题图 9题图
8.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为 _________ .
9.如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO= _________ 度.
10.如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1= _________ 度.
10题图 12题 13题图 14题图
11.已知菱形的一个内角为60°,一条对角线的长为,则另一条对角线的长为 _________ .
12.如图所示,两个全等菱形的边长为1米,一个微型机器人由A点开始按A﹣>B﹣>C﹣>D﹣>E﹣>F﹣>C﹣>G﹣>A的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在 _________ 点.
13.如图,P为菱形ABCD的对角线上一点,PE⊥AB于点E,PF⊥AD于点F,PF=3cm,则P点到AB的距离是 _________ cm.
14.已知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为 _________ .
15.已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为 _________ cm2.
16.已知菱形的周长是52cm,一条对角线长是24cm,则它的面积是 _________ cm2.
17.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是 _________ .
17题图 18题图 19题图
18.如图:菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是 _________ .
19.如图:点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE= _________ 度.
三.解答题(共7小题)
20.如图,四边形ABCD为菱形,已知A(0,4),B(﹣3,0).
(1)求点D的坐标;
(2)求经过点C的反比例函数解析式.
21.如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延长线于点E.
求证:DE=BE.
22.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.
(1)求∠ABD的度数;
(2)求线段BE的长.
23.如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.
(1)求证:BE=BF;
(2)当菱形ABCD的对角线AC=8,BD=6时,求BE的长.
24.如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合),连接DP交对角线AC于E连接BE.
(1)证明:∠APD=∠CBE;
(2)若∠DAB=60°,试问P点运动到什么位置时,△ADP的面积等于菱形ABCD面积的,为什么?
25.已知:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且DE=BF.请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).
(1)连接 _________ ;
(2)猜想: _________ = _________ ;
(3)证明:(说明:写出证明过程的重要依据)
26.如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B出发向点C运动,点P、Q的速度都是1cm/s.
(1)在运动过程中,四边形AQCP可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP是菱形?
(2)分别求出菱形AQCP的周长、面积.
菱形的判定1
1、能够判别一个四边形是菱形的条件是( )
A. 对角线相等且互相平分
B. 对角线互相垂直且相等
C. 对角线互相平分
D. 一组对角相等且一条对角线平分这组对角
2、平行四边形ABCD的两条对角线AC、BD相交于点O, AB=, AO=2, OB=1. 四边形ABCD 是菱形吗?为什么?
3、 如图,AD是△ABC的角平分线。DE∥AC交AB于E,DF∥AB交AC于F.
四边形AEDF是菱形吗?说明你的理由。
如图,□ABCD的对角线AC的垂直平分线与AD、BC分别交于E、F,四边形AFCE是否是菱形?为什么?
5、已知DE∥AC、DF∥AB,添加下列条件后,不能判断四边形DEAF为菱形的是( )
A. AD平分∠BAC
B. AB=AC=且BD=CD
C. AD为中线
D. EF⊥AD
如右图,已知四边形ABCD为菱形,AE=CF. 求证:四边形BEDF为菱形。
7、已知ABCD为平行四边形纸片,要想用它剪成一个菱形。小刚说只要过BD中点作BD的垂线交AD、BC于E、F,沿BE、DF剪去两个角,所得的四边形BFDE为菱形。你认为小刚的方法对吗?为什么?
8、如右上图,两张等宽的纸条交叉重叠在一起,重叠的部分ABCD是菱形吗?为什么?
9、如图,四边形ABCD中,对角线AC和BD相交于点O,且AC⊥BD,点M、N分别在BD、AC上,且AO=ON=NC,BM=MO=OD. 求证:BC=2 DN.
10、如图,已知四边形ABCD为矩形,AD=20㎝、AB=10㎝。M点从D到A,P点从B到C,两点的速度都为2㎝/s;N点从A到B,Q点从C到D,两点的速度都为1㎝/s。若四个点同时出发。
(1)判断四边形MNPQ的形状。
(2)四边形MNPQ能为菱形吗?若能,请求出此时运动的时间;若不能,说明理由。
11、 如图所示,△ABC中,∠ACB=90°,∠ABC的平分线BD交AC于点D,CH⊥AB于H,且交BD于点F,DE⊥AB于E,四边形CDEF是菱形吗?请说明理由.
菱形的判定2
一、选择题
1.下列四边形中不一定为菱形的是( )
A.对角线相等的平行四边形 B.每条对角线平分一组对角的四边形
C.对角线互相垂直的平行四边形 D.用两个全等的等边三角形拼成的四边形
2.四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD=BC;⑤AD∥BC.这5个条件中任选三个,能使四边形ABCD是菱形的选法有( ).
A.1种 B.2种 C.3种 D.4种
3.菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是( )
A.8cm和4cm B.4cm和8cm
C.8cm和8cm D.4cm和4cm
二、填空题
4.如图1所示,已知平行四边形ABCD,AC,BD相交于点O,添加一个条件使平行四边形为菱形,添加的条件为________.(只写出符合要求的一个即可)
图1 图2
5.如图2所示,D,E,F分别是△ABC的边BC,CA,AB上的点,且DE∥AB,DF∥CA,要使四边形AFDE是菱形,则要增加的条件是________.(只写出符合要求的一个即可)
6.菱形ABCD的周长为48cm,∠BAD:∠ABC=1:2,则BD=_____,菱形的面积是______.
7.在菱形ABCD中,AB=4,AB边上的高DE垂直平分边AB,则BD=_____,AC=_____.
三、解答题
8.如图所示,在四边形ABCD中,AB∥CD,AB=CD=BC,四边形ABCD是菱形吗?说明理由.
四、思考题
9.如图,平行四边形ABCD的对角线相交于点O,且OC=OD,PD∥AC,PC∥BD,PD,PC相交于点P,四边形PCOD是菱形吗?试说明理由.
菱形的判定3
一、选择题(共10小题)
1、在平面直角坐标系中,已知点A(0,2),B(﹣2,0),C(0,﹣2),D(2,0),则以这四个点为顶点的四边形ABCD是( )
A、矩形 B、菱形
C、正方形 D、梯形
2、用两个全等的等边三角形,可以拼成下列哪种图形( )
A、矩形 B、菱形
C、正方形 D、等腰梯形
3、如图,下列条件之一能使平行四边形ABCD是菱形的为( )
①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.
A、①③ B、②③
C、③④ D、①②③
4、红丝带是关注艾滋病防治问题的国际性标志,人们将红丝带剪成小段,并用别针将折叠好的红丝带别在胸前,如图所示.红丝带重叠部分形成的图形是( )
A、正方形 B、等腰梯形
C、菱形 D、矩形
5、(在同一平面内,用两个边长为a的等边三角形纸片(纸片不能裁剪)可以拼成的四边形是( )
A、矩形 B、菱形
C、正方形 D、梯形
6、用两个边长为a的等边三角形纸片拼成的四边形是( )
A、等腰梯形 B、正方形
C、矩形 D、菱形
7、汶川地震后,吉林电视台法制频道在端午节组织发起“绿丝带行动”,号召市民为四川受灾的人们祈福.人们将绿丝带剪成小段,并用别针将折叠好的绿丝带别在胸前,如图所示,绿丝带重叠部分形成的图形是( )
A、正方形 B、等腰梯形
C、菱形 D、矩形
8、能判定一个四边形是菱形的条件是( )
A、对角线相等且互相垂直 B、对角线相等且互相平分
C、对角线互相垂直 D、对角线互相垂直平分
9、四边形的四边长顺次为a、b、c、d,且a2+b2+c2+d2=ab+bc+cd+ad,则此四边形一定是( )
A、平行四边形 B、矩形
C、菱形 D、正方形
二、填空题(共8小题)
11、(如图,四边形ABCD的对角线互相平分,要使它变为菱形,需要添加的条件是 _________ (只填一个你认为正确的即可).
12、如图,如果要使平行四边形ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是 _________ .
13、(如图,平行四边形ABCD中,AF、CE分别是∠BAD和∠BCD的角平分线,根据现有的图形,请添加一个条件,使四边形AECF为菱形,则添加的一个条件可以是 _________ .(只需写出一个即可,图中不能再添加别的“点”和“线”)
14、在四边形ABCD中,对角线AC、BD交于点O,从(1)AB=CD;(2)AB∥CD;(3)OA=OC;(4)OB=OD;(5)AC⊥BD;(6)AC平分∠BAD这六个条件中,选取三个推出四边形ABCD是菱形.如(1)(2)(5)=>ABCD是菱形,再写出符合要求的两个: _________ =>ABCD是菱形; _________ =>ABCD是菱形.
15、若四边形ABCD是平行四边形,请补充条件 _________ (写一个即可),使四边形ABCD是菱形.
16、在四边形ABCD中,给出四个条件:①AB=CD,②AD∥BC,③AC⊥BD,④AC平分∠BAD,由其中三个条件推出四边形ABCD是菱形,你认为这三个条件是 _________ .(写四个条件的不给分,只填序号)
17、要说明一个四边形是菱形,可以先说明这个四边形是 _________ 形,再说明 _________ (只需填写一种方法)
18、如图,四边形ABCD是平行四边形,AC、BD相交于点O,不添加任何字母和辅助线,要使四边形ABCD是菱形,则还需添加一个条件是 _________ (只需填写一个条件即可).
三、解答题(共11小题)
19、(如图,在△ABC中,AB=AC,D是BC的中点,连接AD,在AD的延长线上取一点E,连接BE, CE.
(1)求证:△ABE≌△ACE;
(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.
20、如图,在 ABCD中,E,F分别为边AB,CD的中点,连接DE、BF、BD.
(1)求证:△ADE≌△CBF.
(2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.
21、如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.
(1)求证:AE=DF;
(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.
22、已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形.
23、如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.
(1)求证:△ABC≌△DCB;
(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CN的数量关系,并证明你的结论.
24、如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于E,连接AE、CD.
(1)求证:AD=CE;
(2)填空:四边形ADCE的形状是 _________ .
25、如图△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB
(1)求证:四边形EFCD是菱形;
(2)设CD=4,求D、F两点间的距离.
26、如图,在梯形纸片ABCD中,AD∥BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C处,折痕DE交BC于点E,连接C′E.
求证:四边形CDC′E是菱形.
27、已知:如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于点E、F.
求证:四边形AFCE是菱形.
28、如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交边AB于点F,在边AC上取一点P,使PE=EB,连接FP.
(1)请直接写出图中与线段EF相等的两条线段;(不再另外添加辅助线)
(2)探究:当点E在什么位置时,四边形EFPC是平行四边形?并判断四边形EFPC是什么特殊的平行四边形,请说明理由;
(3)在(2)的条件下,以点E为圆心,r为半径作圆,根据⊙E与平行四边形EFPC四条边交点的总个数,求相应的r的取值范围.
29、如图,已知△ABC的面积为3,且AB=AC,现将△ABC沿CA方向平移CA长度得到△EFA.
(1)求△ABC所扫过的图形的面积;
(2)试判断AF与BE的位置关系,并说明理由;
(3)若∠BEC=15°,求AC的长.
转载请注明出处卷子答案网-一个不只有答案的网站 » 专题复习:菱形的性质与判定 训练(无答案)