第十章 磁场
磁场对运动电荷的作用
【考点预测】
1. 带电粒子在有界匀强磁场中的运动
2. 带电粒子在有界匀强磁场中的运动临界问题
3. 带电粒子在有界匀强磁场中的运动多解问题
4. 带电粒子在有界匀强磁场中的运动极值问题
【方法技巧与总结】
一、洛伦兹力的大小和方向
1.定义:磁场对运动电荷的作用力.
2.大小
(1)v∥B时,F=0;
(2)v⊥B时,F=qvB;
(3)v与B的夹角为θ时,F=qvBsin θ.
3.方向
(1)判定方法:应用左手定则,注意四指应指向正电荷运动方向或负电荷运动的反方向;
(2)方向特点:F⊥B,F⊥v.即F垂直于B、v决定的平面.(注意B和v可以有任意夹角)
4.做功:洛伦兹力不做功.
二、带电粒子在匀强磁场中的运动
1.若v∥B,带电粒子以入射速度v做匀速直线运动.
2.若v⊥B时,带电粒子在垂直于磁感线的平面内,以入射速度v做匀速圆周运动.
3.基本公式
(1)向心力公式:qvB=m;
(2)轨道半径公式:r=;
(3)周期公式:T=.
注意:带电粒子在匀强磁场中运动的周期与速率无关.
【题型归纳目录】
题型一:洛伦兹力的理解和应用
题型二:带电粒子在匀强磁场中的运动
题型三:带电粒子在匀强磁场中运动的临界、极值问题
题型四:带电粒子在匀强磁场中运动的多解问题
【题型一】洛伦兹力的理解和应用
【典型例题】
例1.如图所示,真空中竖直放置一根通电长直金属导线,电流方向向上。是一根水平放置的内壁光滑绝缘管,端点分别在以为轴心、半径为R的圆柱面上。现使一个小球自a端以速度射入管,小球半径略小于绝缘管半径且带正电,小球重力忽略不计,小球向b运动过程中,下列说法正确的是( )
A.小球的速率始终不变
B.洛伦兹力对小球先做正功,后做负功
C.小球受到的洛伦兹力始终为零
D.管壁对小球的弹力方向先竖直向下,后竖直向上
【方法技巧与总结】
1.洛伦兹力方向的特点
(1)洛伦兹力的方向总是垂直于运动电荷速度方向和磁场方向确定的平面。
(2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化。
(3)左手定则判断洛伦兹力方向,但一定分清正、负电荷。
2.洛伦兹力与电场力的比较
洛伦兹力 电场力
产生条件 v≠0且v不与B平行 电荷处在电场中
大小 F=qvB(v⊥B) F=qE
力方向与场 方向的关系 一定是F⊥B,F⊥v 正电荷受力与电场方向相同,负电荷受力与电场方向相反
做功情况 任何情况下都不做功 可能做正功、负功,也可能不做功
作用效果 只改变电荷的速度方向,不改变速度大小 既可以改变电荷的速度大小,也可以改变运动的方向
练1.导线中带电粒子的定向运动形成了电流.带电粒子定向运动时所受洛伦兹力的矢量和,在宏观上表现为导线所受的安培力.如图所示,设导线ab中每个带正电粒子定向运动的速度都是v,单位体积的粒子数为n,粒子的电荷量为q,导线的横截面积为S,磁感应强度大小为B、方向垂直纸面向里,则下列说法正确的是
A.由题目已知条件可以算得通过导线的电流为
B.题中导线受到的安培力的方向可用安培定则判断
C.每个粒子所受的洛伦兹力为,通电导线所受的安培力为
D.改变适当的条件,有可能使图中带电粒子受到的洛伦兹力方向反向而导线受到的安培力方向保持不变
【题型二】带电粒子在匀强磁场中的运动
【典型例题】
例2.如图所示,半径为R的圆形区域中有垂直纸面向外的匀强磁场(图中未画出),磁感应强度B,一比荷为的带正电粒子,从圆形磁场边界上的A点以的速度垂直直径MN射入磁场,恰好从N点射出,且,下列选项正确的是( )
A.粒子在磁场中运动的时间为
B.粒子从N点射出方向竖直向下
C.若粒子改为从圆形磁场边界上的C点以相同的速度入射,一定从N点射出
D.若要实现带电粒子从A点入射,从N点出射,则所加圆形磁场的最小面积为
【方法技巧与总结】
1.带电粒子在匀强磁场中做匀速圆周运动的思想方法和理论依据
一般说来,要把握好“一找圆心,二定半径,三求时间”的分析方法。在具体问题中,要依据题目条件和情景而定。解题的理论依据主要是由牛顿第二定律列式:qvB=m,求半径r=及运动周期T==。
2.圆心的确定方法
法一 若已知粒子轨迹上的两点的速度方向,则可根据洛伦兹力F⊥v,分别确定两点处洛伦兹力F的方向,其交点即为圆心,如图甲。
法二 若已知粒子运动轨迹上的两点和其中某一点的速度方向,则可作出此两点的连线(即过这两点的圆弧的弦)的中垂线,中垂线与过已知点速度方向的垂线的交点即为圆心,如图乙。
3.半径的确定和计算
利用平面几何关系,求出该圆的可能半径(或圆心角),求解时注意以下几何特点:
粒子速度的偏向角(φ)等于圆心角(α),并等于AB弦与切线的夹角(弦切角θ)的2倍(如图),即φ=α=2θ=ωt。
4.运动时间的确定
粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示:
t=T,t=(l为弧长)。
5.常见运动轨迹的确定
(1)直线边界(进出磁场具有对称性,如图所示)。
(2)平行边界(存在临界条件,如图所示)。
(3)圆形边界(沿径向射入必沿径向射出,如图所示)。
6.常用解题知识
(1)几何知识:三角函数、勾股定理、偏向角与圆心角关系。根据几何知识可以由已知长度、角度计算粒子运动的轨迹半径,或根据粒子运动的轨迹半径计算未知长度、角度。
(2)半径公式、周期公式:R=、T=。根据两个公式可由q、m、v、B计算粒子运动的半径、周期,也可根据粒子运动的半径或周期计算磁感应强度、粒子的电荷量、质量等。
(3)运动时间计算式:计算粒子的运动时间或已知粒子的运动时间计算圆心角或周期时,常用到t=T。
练2.如图所示,空间存在垂直纸面向外、磁感应强度大小为B的匀强磁场,粒子源O可沿纸面向各个方向以相同的速率发射质量为m、带电荷量为q的正粒子,一薄光屏与纸面的交线为PQ,,,。要使左、右两侧所有点均能被粒子打中,则粒子的速率至少为( )
A. B. C. D.
【题型三】带电粒子在匀强磁场中运动的临界、极值问题
【典型例题】
例3.如图所示,在直角坐标xOy平面内,有一半径为R的圆形匀强磁场区域,磁感应强度的大小为B,方向垂直于纸面向里,边界与x、y轴分别相切于a、b两点,ac为直径。一质量为m,电荷量为q的带电粒子从b点以某一初速度v0(v0大小未知)沿平行于x轴正方向进入磁场区域,从a点垂直于x轴离开磁场,不计粒子重力。下列判断不正确的是( )
A.该粒子的速度为
B.该粒子从b点运动到a点的时间为
C.以从b点沿各个方向垂直进入磁场的该种粒子从边界出射的最远点恰为a点
D.以从b点沿各个方向垂直进入磁场的该种粒子在磁场中运动的最长时间是
【方法技巧与总结】
1.解决带电粒子在磁场中的临界问题的关键
(1)以题目中的“恰好”“最大”“最高”“至少”等词语为突破口。
(2)寻找临界点常用的结论
①刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。
②当速度v一定时,弧长(或弦长)越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长。
③当速度v变化时,圆心角越大,运动时间越长。
2.临界问题的一般解题流程
练3.粒子物理研究中使用的一种球状探测装置横截面的简化模型如图所示。内圆区域有垂直纸面向里的匀强磁场,外圆是探测器。两个粒子先后从P点沿径向射入磁场,粒子1沿直线PM通过磁场区域后打在探测器上的M点。粒子2经磁场偏转后打在探测器上的N点。装置内部为真空状态,忽略粒子重力及粒子间相互作用力。下列说法正确的是( )
A.粒子1可能为质子
B.粒子2可能为电子
C.若增大磁感应强度,粒子1可能打在探测器上的Q点
D.若增大粒子入射速度,粒子2可能打在探测器上的Q点
【题型四】带电粒子在匀强磁场中运动的多解问题
【典型例题】
例4.如图甲所示,边长为L的正方形abcd区域内存在匀强磁场,磁感强度大小为,方向垂直于abed所在平面,且周期性变化(周期T可根据需要调整),如图乙所示,设垂直abcd平面向里为磁感强度的正方向。现有一电子在时刻由a点沿ab方向射入磁场区,已知电子的质量为m,电荷量大小为e,图中边界上有两点f、g,且,关于电子在磁场中的运动,以下说法中正确的是( )
A.调整磁场变化周期T,让电子沿bc方向经过c点,电子的速度大小一定是
B.调整磁场变化周期T,让电子经过d点,电子的速度大小一定是
C.要想让电子经过点f点,则磁场变化周期一定是
D.要想让电子垂直bc边过g点,则磁场变化周期一定是
【方法技巧与总结】
多解分类 多解原因 示意图
带电粒 子电性 不确定 带电粒子可能带正电,也可能带负电,粒子在磁场中的运动轨迹不同
磁场方向 不确定 题目只告诉了磁感应强度的大小,而未具体指出磁感应强度的方向,必须考虑磁感应强度方向有两种情况
临界状态 不唯一 带电粒子在飞越有界磁场时,可能直接穿过去了,也可能从入射界面反向飞出
运动的 往复性 带电粒子在空间运动时,往往具有往复性
练4.如图所示,边长为正方形区域内无磁场,正方形中线将区域外左右两侧分成两个磁感应强度均为的匀强磁场区域,右侧磁场方向垂直于纸面向外,左侧磁场方向垂直于纸面向里。现将一质量为,电荷量为的正粒子从中点以某一速率垂直于射入磁场,不计粒子的重力,则关于粒子的运动,下列说法正确的是( )
A.若粒子能垂直于射入正方形区域内,则粒子的最大速度为
B.若粒子能垂直于射入正方形区域内,则粒子的速度可能为
C.若粒子能垂直于射入正方形区域内,则粒子的速度可能为
D.若粒子能垂直于射入正方形区域内,则粒子的速度可能为
【过关测试】
一、单选题
1.如图所示,在匀强磁场中有1和2两个质子在同一平面内沿逆时针方向做匀速圆周运动,轨道半径并相切于P点,设、,、,、,、,分别表示1、2两个质子的周期,线速度,向心加速度以及各自从经过P点算起到第一次通过图中虚线所经历的时间,下列说话错误的是( )
A. B. C. D.
2.如图所示为一带电粒子探测器装置的侧视图:在一水平放置、厚度为d的薄板上下,有磁感应强度大小均为B但方向相反的匀强磁场:上方的磁场方向垂直纸面向里,而下方磁场方向垂直纸面向外。有一电荷量为q、质量为m的粒子进入该探测器,其运动轨迹如图中曲线所示,粒子的轨迹垂直于磁场方向且垂直穿过薄板。如果薄板下方轨迹的半径R大于薄板上方轨迹的半径r,设粒子重力与空气阻力可忽略不计,则下列说法正确的是( )
A.粒子带正电,由O点沿着轨迹运动至P点
B.穿过薄板后,粒子的动能为
C.穿过薄板导致的粒子动能改变
D.粒子穿过薄板时,所受到的平均阻力大小为
3.两根长直导线,垂直穿过光滑绝缘水平面,与水平面的交点分别为M和N,两导线内通有大小相等、方向相反的电流I,图为其俯视图。A、B是该平面内M、N连线中垂线上两点,从B点以一指向A点的初速度v释放一个带正电的小球,则小球的运动情况是( )
A.小球将做匀速直线运动 B.小球先做减速运动后做加速运动
C.小球将向左做曲线运动 D.小球将向右做曲线运动
4.如图所示,正方形内有一垂直纸面向里的匀强磁场(图中未画出),一束电子以不同的速度沿ab方向垂直磁场射入,形成从c点离开磁场区域和从d点离开磁场区域的甲、乙两种轨迹。设沿甲、乙轨迹运动的电子速度大小分别为、,在磁场中运动的时间分别为、,则( )
A., B.,
C., D.,
5.如图所示,平面直角坐标系 xOy 内,存在垂直纸面向里的匀强磁场, 磁感应强度 B=0.2T,原点O有一粒子源,能向纸面内各个方向释放出比荷为4×108C/kg 的正粒子,粒子初速度 v0=8×106m/s,不计粒子重力, 有一与 x轴成 45°角倾斜放置的足够长挡板跨越第一、三、四象限,P是挡板与 x 轴交点,,则挡板上被粒子打中的区域长度为( )
A.24cm B.16cm
C.20cm D.32cm
6.如图所示,空间存在垂直纸面向外、磁感应强度大小为的匀强磁场,粒子源可沿纸面向各个方向以相同的速率发射质量为、带电荷量为的正粒子,一薄光屏与纸面的交线为PQ,OQL,PQ2L,。要使左、右两侧所有点均能被粒子打中,则粒子的速率至少为( )
A. B. C. D.
7.如图所示,半径为的圆形区域有方向垂直纸面向外的匀强磁场,磁感应强度为,今有一质量为(不计重力),带电量为的离子以某一速度沿平行于直径的方向射入磁场区域,射入点与间距离为,( )
A.若该离子在磁场中的运动半径为,则该离子一定能够通过磁场圆的圆心
B.若该离子在磁场中的运动半径为,则该离子在磁场中入射点与出射点相距小于
C.若该离子能够通过磁场圆的圆心,则该离子在磁场中的运动时间为
D.若该离子在磁场中入射点与出射点相距最远,则该离子在磁场中的运动时间为
8.如图,一个边长为l的正方形区域内存在垂直于纸面向外的匀强磁场,磁感应强度大小为B。现有一质量为m、带电量为的粒子以某一速度从M点垂直于磁场射入,粒子恰好从的中点射出磁场。已知粒子射入磁场时的速度方向与的夹角为,不计粒子重力,粒子射入磁场的速度大小为( )
A. B. C. D.
二、多选题
9.如图所示,空间中有一个底角均为的梯形,上底与腰长相等为L,梯形处于磁感应强度大小为B、垂直于纸面向外的匀强磁场中,现c点存在一个粒子源,可以源源不断射出速度方向沿cd,大小可变的电子,电子的比荷为k,为使电子能从ab边射出,速度大小可能为( )
A. B. C. D.
10.如图所示,在平面内,以为圆心、为半径的圆内有垂直平面向外的匀强磁场,轴下方有垂直平面向里的匀强磁场,两区域磁感应强度大小均为,第四象限有一与轴成45°角倾斜放置的挡板,、两点在坐标轴上,且、两点间的距离大于,在圆形磁场的左侧的区间内,均匀分布着质量为、电荷量为的一簇带电粒子,当所有粒子均沿轴正向以相同的速度射入圆形磁场区域时,粒子偏转后都从点进入轴下方磁场,结果有一半粒子能打在挡板上。不计粒子重力、不考虑粒子间相互作用力,下列说法正确的是( )
A.所有粒子在圆形磁场中运动的时间相等
B.挡板端点的横坐标为
C.挡板上被粒子打中的区域长度为
D.从距离轴为处射入圆形磁场的粒子,离开磁场时的坐标为
11.如图所示,圆形区域内存在着垂直于纸面向外的匀强磁场,两带电粒子(不计重力)沿直线AB方向从A点射入磁场中,分别从圆弧上的P、Q两点射出,则下列说法正确的是( )
A.若两粒子比荷相同,则从A 分别到P、Q 经历时间之比为1:2
B.若两粒子比荷相同,则从A 分别到P、Q经历时间之比为2:1
C.若两粒子比荷相同,则两粒子在磁场中速率之比为2:1
D.若两粒子速率相同,则两粒子的比荷之比为3:1
12.如图甲所示,用强磁场将百万开尔文的高温等离子体(等量的正离子和电子)约束在特定区域实现受控核聚变的装置叫托克马克。我国托克马克装置在世界上首次实现了稳定运行 100 秒的成绩。多个磁场才能实现磁约束,图乙为其中沿管道方向的一个磁场,越靠管的右侧磁场越强。不计离子重力,关于离子在图乙磁场中运动时,下列说法正确的是( )
A.离子从磁场右侧区域运动到左侧区域,磁场对其做负功
B.离子在磁场中运动时,磁场对其一定不做功
C.离子从磁场右侧区域运动到左侧区域,速度变大
D.离子由磁场的左侧区域向右侧区域运动时,运动半径减小第十章 磁场
磁场对运动电荷的作用
【考点预测】
1. 带电粒子在有界匀强磁场中的运动
2. 带电粒子在有界匀强磁场中的运动临界问题
3. 带电粒子在有界匀强磁场中的运动多解问题
4. 带电粒子在有界匀强磁场中的运动极值问题
【方法技巧与总结】
一、洛伦兹力的大小和方向
1.定义:磁场对运动电荷的作用力.
2.大小
(1)v∥B时,F=0;
(2)v⊥B时,F=qvB;
(3)v与B的夹角为θ时,F=qvBsin θ.
3.方向
(1)判定方法:应用左手定则,注意四指应指向正电荷运动方向或负电荷运动的反方向;
(2)方向特点:F⊥B,F⊥v.即F垂直于B、v决定的平面.(注意B和v可以有任意夹角)
4.做功:洛伦兹力不做功.
二、带电粒子在匀强磁场中的运动
1.若v∥B,带电粒子以入射速度v做匀速直线运动.
2.若v⊥B时,带电粒子在垂直于磁感线的平面内,以入射速度v做匀速圆周运动.
3.基本公式
(1)向心力公式:qvB=m;
(2)轨道半径公式:r=;
(3)周期公式:T=.
注意:带电粒子在匀强磁场中运动的周期与速率无关.
【题型归纳目录】
题型一:洛伦兹力的理解和应用
题型二:带电粒子在匀强磁场中的运动
题型三:带电粒子在匀强磁场中运动的临界、极值问题
题型四:带电粒子在匀强磁场中运动的多解问题
【题型一】洛伦兹力的理解和应用
【典型例题】
例1.如图所示,真空中竖直放置一根通电长直金属导线,电流方向向上。是一根水平放置的内壁光滑绝缘管,端点分别在以为轴心、半径为R的圆柱面上。现使一个小球自a端以速度射入管,小球半径略小于绝缘管半径且带正电,小球重力忽略不计,小球向b运动过程中,下列说法正确的是( )
A.小球的速率始终不变
B.洛伦兹力对小球先做正功,后做负功
C.小球受到的洛伦兹力始终为零
D.管壁对小球的弹力方向先竖直向下,后竖直向上
【答案】A
【解析】AB.如图为俯视图,根据右手螺旋定则,磁感线如图所示,
小球在磁场中受到洛伦兹力和弹力作用,洛伦兹力和弹力不做功,小球速率不变,B错误,A正确;
CD.当小球运动到中点时,磁感线的切线方向与小球速度方向平行,小球所受洛伦兹力为零;小球自a点到中点,所受洛伦兹力竖直向下,绝缘管壁对小球的弹力竖直向上;小球从中点至b点,所受洛伦兹力竖直向上,绝缘管壁对小球的弹力竖直向下,CD错误。
故选A。
【方法技巧与总结】
1.洛伦兹力方向的特点
(1)洛伦兹力的方向总是垂直于运动电荷速度方向和磁场方向确定的平面。
(2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化。
(3)左手定则判断洛伦兹力方向,但一定分清正、负电荷。
2.洛伦兹力与电场力的比较
洛伦兹力 电场力
产生条件 v≠0且v不与B平行 电荷处在电场中
大小 F=qvB(v⊥B) F=qE
力方向与场 方向的关系 一定是F⊥B,F⊥v 正电荷受力与电场方向相同,负电荷受力与电场方向相反
做功情况 任何情况下都不做功 可能做正功、负功,也可能不做功
作用效果 只改变电荷的速度方向,不改变速度大小 既可以改变电荷的速度大小,也可以改变运动的方向
练1.导线中带电粒子的定向运动形成了电流.带电粒子定向运动时所受洛伦兹力的矢量和,在宏观上表现为导线所受的安培力.如图所示,设导线ab中每个带正电粒子定向运动的速度都是v,单位体积的粒子数为n,粒子的电荷量为q,导线的横截面积为S,磁感应强度大小为B、方向垂直纸面向里,则下列说法正确的是
A.由题目已知条件可以算得通过导线的电流为
B.题中导线受到的安培力的方向可用安培定则判断
C.每个粒子所受的洛伦兹力为,通电导线所受的安培力为
D.改变适当的条件,有可能使图中带电粒子受到的洛伦兹力方向反向而导线受到的安培力方向保持不变
【答案】A
【分析】判断洛伦兹力的方向用左手定则,电流由其定义I=Q/t确定,洛伦兹力的集中表现为安培力.
【解析】电流:,则A正确;导线受到的安培力的方向由左手定则判断,则B错误;粒子所受的洛伦兹力为F洛=qvB,导线长度为L,则其受的安培力为:F=nqLSvB=BIL,则C错误;洛伦兹力方向反向决定了所受到的安培力方向也反向,则D错误;故选A.
【题型二】带电粒子在匀强磁场中的运动
【典型例题】
例2.如图所示,半径为R的圆形区域中有垂直纸面向外的匀强磁场(图中未画出),磁感应强度B,一比荷为的带正电粒子,从圆形磁场边界上的A点以的速度垂直直径MN射入磁场,恰好从N点射出,且,下列选项正确的是( )
A.粒子在磁场中运动的时间为
B.粒子从N点射出方向竖直向下
C.若粒子改为从圆形磁场边界上的C点以相同的速度入射,一定从N点射出
D.若要实现带电粒子从A点入射,从N点出射,则所加圆形磁场的最小面积为
【答案】C
【解析】A.粒子恰好从N点射出,轨迹如下图所示,运动周期为
四边形AONP的圆心角为
粒子在磁场中运动的时间为
故A错误;
B.粒子在磁场中速度偏转,从N点射出方向是与竖直方向呈,故B错误;
C.若粒子改为从圆形磁场边界上的C点以相同的速度入射,轨迹如下图所示,四边形SCON为菱形,由几何知识可知一定从N点射出,故C正确;
D.若要实现带电粒子从A点入射,从N点出射,则所加圆形磁场以AN为直径时面积最小,最小面积为
故D错误。
故选C。
【方法技巧与总结】
1.带电粒子在匀强磁场中做匀速圆周运动的思想方法和理论依据
一般说来,要把握好“一找圆心,二定半径,三求时间”的分析方法。在具体问题中,要依据题目条件和情景而定。解题的理论依据主要是由牛顿第二定律列式:qvB=m,求半径r=及运动周期T==。
2.圆心的确定方法
法一 若已知粒子轨迹上的两点的速度方向,则可根据洛伦兹力F⊥v,分别确定两点处洛伦兹力F的方向,其交点即为圆心,如图甲。
法二 若已知粒子运动轨迹上的两点和其中某一点的速度方向,则可作出此两点的连线(即过这两点的圆弧的弦)的中垂线,中垂线与过已知点速度方向的垂线的交点即为圆心,如图乙。
3.半径的确定和计算
利用平面几何关系,求出该圆的可能半径(或圆心角),求解时注意以下几何特点:
粒子速度的偏向角(φ)等于圆心角(α),并等于AB弦与切线的夹角(弦切角θ)的2倍(如图),即φ=α=2θ=ωt。
4.运动时间的确定
粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示:
t=T,t=(l为弧长)。
5.常见运动轨迹的确定
(1)直线边界(进出磁场具有对称性,如图所示)。
(2)平行边界(存在临界条件,如图所示)。
(3)圆形边界(沿径向射入必沿径向射出,如图所示)。
6.常用解题知识
(1)几何知识:三角函数、勾股定理、偏向角与圆心角关系。根据几何知识可以由已知长度、角度计算粒子运动的轨迹半径,或根据粒子运动的轨迹半径计算未知长度、角度。
(2)半径公式、周期公式:R=、T=。根据两个公式可由q、m、v、B计算粒子运动的半径、周期,也可根据粒子运动的半径或周期计算磁感应强度、粒子的电荷量、质量等。
(3)运动时间计算式:计算粒子的运动时间或已知粒子的运动时间计算圆心角或周期时,常用到t=T。
练2.如图所示,空间存在垂直纸面向外、磁感应强度大小为B的匀强磁场,粒子源O可沿纸面向各个方向以相同的速率发射质量为m、带电荷量为q的正粒子,一薄光屏与纸面的交线为PQ,,,。要使左、右两侧所有点均能被粒子打中,则粒子的速率至少为( )
A. B. C. D.
【答案】D
【解析】要使粒子能打中PQ左侧的所有位置,则粒子最小速度对应轨迹的直径为OP,有
可得对应的最小速度为
要使粒子能打中PQ右侧的所有位置,则粒子最小速度对应轨迹如图所示:
则有
对应的最小速度为
综上可得,要使左、右两侧所有点均能被粒子打中,则粒子的速率至少为。
故选D。
【题型三】带电粒子在匀强磁场中运动的临界、极值问题
【典型例题】
例3.如图所示,在直角坐标xOy平面内,有一半径为R的圆形匀强磁场区域,磁感应强度的大小为B,方向垂直于纸面向里,边界与x、y轴分别相切于a、b两点,ac为直径。一质量为m,电荷量为q的带电粒子从b点以某一初速度v0(v0大小未知)沿平行于x轴正方向进入磁场区域,从a点垂直于x轴离开磁场,不计粒子重力。下列判断不正确的是( )
A.该粒子的速度为
B.该粒子从b点运动到a点的时间为
C.以从b点沿各个方向垂直进入磁场的该种粒子从边界出射的最远点恰为a点
D.以从b点沿各个方向垂直进入磁场的该种粒子在磁场中运动的最长时间是
【答案】D
【解析】AB.粒子从b点以某一初速度沿平行于x轴正方向进入磁场区域,从a点垂直于轴离开磁场,如图所示由洛伦兹力提供向心力可得
由几何关系可得
联立解得
该粒子从b点运动到a点的时间为
故AB正确;
C.以从b点沿各个方向垂直进入磁场,粒子在磁场中的半径为
该种粒子从边界出射的最远点与入射点的距离为粒子轨迹圆的直径,由几何关系可知
可知该种粒子从边界出射的最远点恰为a点,故C正确;
D.以从b点沿各个方向垂直进入磁场,粒子在磁场中的半径为
当该粒子在磁场中运动轨迹对应的弦长最大时,轨迹对应的圆心角最大,粒子在磁场中运动的时间最长,如图所示
由几何关系可知,最大圆心角为,则最长时间为
故D错误。
此题选择不正确的选项,故选D。
【方法技巧与总结】
1.解决带电粒子在磁场中的临界问题的关键
(1)以题目中的“恰好”“最大”“最高”“至少”等词语为突破口。
(2)寻找临界点常用的结论
①刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。
②当速度v一定时,弧长(或弦长)越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长。
③当速度v变化时,圆心角越大,运动时间越长。
2.临界问题的一般解题流程
练3.粒子物理研究中使用的一种球状探测装置横截面的简化模型如图所示。内圆区域有垂直纸面向里的匀强磁场,外圆是探测器。两个粒子先后从P点沿径向射入磁场,粒子1沿直线PM通过磁场区域后打在探测器上的M点。粒子2经磁场偏转后打在探测器上的N点。装置内部为真空状态,忽略粒子重力及粒子间相互作用力。下列说法正确的是( )
A.粒子1可能为质子
B.粒子2可能为电子
C.若增大磁感应强度,粒子1可能打在探测器上的Q点
D.若增大粒子入射速度,粒子2可能打在探测器上的Q点
【答案】D
【解析】A.粒子1沿直线运动,因忽略粒子重力及粒子间相互作用力,可知该粒子不带电,故不可能为质子,故A错误;
B.粒子2水平射入后向上偏转,即受到向上的洛伦兹力,由左手定则可知该粒子带正电,故B错误;
C.因粒子1不带电,所以增大磁感应强度,粒子1仍打在M点,故C错误;
D.由可知增大粒子入射速度后,粒子圆轨迹半径增大,所以粒子2可能打在探测器上的Q点,故D正确。
故选D。
【题型四】带电粒子在匀强磁场中运动的多解问题
【典型例题】
例4.如图甲所示,边长为L的正方形abcd区域内存在匀强磁场,磁感强度大小为,方向垂直于abed所在平面,且周期性变化(周期T可根据需要调整),如图乙所示,设垂直abcd平面向里为磁感强度的正方向。现有一电子在时刻由a点沿ab方向射入磁场区,已知电子的质量为m,电荷量大小为e,图中边界上有两点f、g,且,关于电子在磁场中的运动,以下说法中正确的是( )
A.调整磁场变化周期T,让电子沿bc方向经过c点,电子的速度大小一定是
B.调整磁场变化周期T,让电子经过d点,电子的速度大小一定是
C.要想让电子经过点f点,则磁场变化周期一定是
D.要想让电子垂直bc边过g点,则磁场变化周期一定是
【答案】D
【解析】A.要想让电子沿bc方向经过c点,可能的轨迹如图所示
也可以转奇数个圆弧后到c,根据洛伦兹力充当向心力,有
可得
根据以上分析则有
(n=0,1,2…)
解得
(n=0,1,2…)
故A错误;
B.要想让经过d点,可能的轨迹如图所示
可知,,解得
或者先顺时针转磁场的半个周期,之后逆时针转,从ad方向经过d
这种情况下
解得
故B错误;
C.要想让电子经过f点,轨迹可能如图所示
由几何关系可得
解得
只要满足运动时间即可;或者如图所示
圆周周期,每一次转过120°圆心角
解得
故C错误;
D.要想让电子垂直bc边过g点,经过偶数次偏转,每一次转过60°圆心角,圆周周期,则有
解得
故D正确。
故选D。
【方法技巧与总结】
多解分类 多解原因 示意图
带电粒 子电性 不确定 带电粒子可能带正电,也可能带负电,粒子在磁场中的运动轨迹不同
磁场方向 不确定 题目只告诉了磁感应强度的大小,而未具体指出磁感应强度的方向,必须考虑磁感应强度方向有两种情况
临界状态 不唯一 带电粒子在飞越有界磁场时,可能直接穿过去了,也可能从入射界面反向飞出
运动的 往复性 带电粒子在空间运动时,往往具有往复性
练4.如图所示,边长为正方形区域内无磁场,正方形中线将区域外左右两侧分成两个磁感应强度均为的匀强磁场区域,右侧磁场方向垂直于纸面向外,左侧磁场方向垂直于纸面向里。现将一质量为,电荷量为的正粒子从中点以某一速率垂直于射入磁场,不计粒子的重力,则关于粒子的运动,下列说法正确的是( )
A.若粒子能垂直于射入正方形区域内,则粒子的最大速度为
B.若粒子能垂直于射入正方形区域内,则粒子的速度可能为
C.若粒子能垂直于射入正方形区域内,则粒子的速度可能为
D.若粒子能垂直于射入正方形区域内,则粒子的速度可能为
【答案】C
【解析】根据题意可知,粒子在磁场中做匀速圆周运动由洛伦兹力提供向心力有
解得
若粒子能垂直于射入正方形区域内,则粒子可能的运动轨迹如图所示
由几何关系可得
解得
当时,速度最大为
当时
当时
则粒子的速度不可能为。
故选C。
【过关测试】
一、单选题
1.如图所示,在匀强磁场中有1和2两个质子在同一平面内沿逆时针方向做匀速圆周运动,轨道半径并相切于P点,设、,、,、,、,分别表示1、2两个质子的周期,线速度,向心加速度以及各自从经过P点算起到第一次通过图中虚线所经历的时间,下列说话错误的是( )
A. B. C. D.
【答案】B
【解析】A.对两个质子,其比荷相同,由洛伦兹力提供向心力,可得
解得质子在磁场中做圆周运动的周期为
可知在同一磁场中,则有,A正确,不符合题意;
B.由
可得质子在磁场中做圆周运动的半径为
因,则有,B错误,符合题意;
C.由
可得质子在磁场中做圆周运动的加速度为
因为,可知,C正确,不符合题意;
D.两质子的运动周期相同,由题图可知质子1从经过P点算起到第一次通过图中虚线所转过的圆心角比质子2小,由
可知,D正确,不符合题意。
故选B。
2.如图所示为一带电粒子探测器装置的侧视图:在一水平放置、厚度为d的薄板上下,有磁感应强度大小均为B但方向相反的匀强磁场:上方的磁场方向垂直纸面向里,而下方磁场方向垂直纸面向外。有一电荷量为q、质量为m的粒子进入该探测器,其运动轨迹如图中曲线所示,粒子的轨迹垂直于磁场方向且垂直穿过薄板。如果薄板下方轨迹的半径R大于薄板上方轨迹的半径r,设粒子重力与空气阻力可忽略不计,则下列说法正确的是( )
A.粒子带正电,由O点沿着轨迹运动至P点
B.穿过薄板后,粒子的动能为
C.穿过薄板导致的粒子动能改变
D.粒子穿过薄板时,所受到的平均阻力大小为
【答案】C
【解析】A.粒子穿过薄板后速度会减小,由
可得半径
且
可见粒子做圆周运动的半径会减小,由于
则粒子是由P点沿着轨迹运动到O点的,由左手定则知,粒子带正电,故A错误;
BCD.粒子在磁场中运动时的动能
可见粒子穿过薄板前的动能前
粒子穿过薄板后的动能
则穿过薄板过程动能变化量
即穿过薄板导致的粒子动能改变了
粒子穿过薄板过程,由动能定理
解得粒子所受的平均阻力大小
故C正确,BD错误。
故选C。
3.两根长直导线,垂直穿过光滑绝缘水平面,与水平面的交点分别为M和N,两导线内通有大小相等、方向相反的电流I,图为其俯视图。A、B是该平面内M、N连线中垂线上两点,从B点以一指向A点的初速度v释放一个带正电的小球,则小球的运动情况是( )
A.小球将做匀速直线运动 B.小球先做减速运动后做加速运动
C.小球将向左做曲线运动 D.小球将向右做曲线运动
【答案】A
【解析】根据安培定则可知,两电流在A点产生的磁感应强度的方向如图所示,根据对称性和平行四边形定则可知,A点处的合磁感应强度的方向沿着AB方向,同理可得在AB连线上各点的合磁感应强度的方向都沿AB方向,与带电小球的初速度方向平行,则带电小球在光滑水平面上不受洛伦兹力作用,小球受到的合外力为0,小球做匀速直线运动,A正确,BCD错误。
故选A。
4.如图所示,正方形内有一垂直纸面向里的匀强磁场(图中未画出),一束电子以不同的速度沿ab方向垂直磁场射入,形成从c点离开磁场区域和从d点离开磁场区域的甲、乙两种轨迹。设沿甲、乙轨迹运动的电子速度大小分别为、,在磁场中运动的时间分别为、,则( )
A., B.,
C., D.,
【答案】D
【解析】带电粒子在匀强磁场中做圆周运动,根据半径公式
可知甲、乙带电粒子在磁场中运动的速度之比
根据周期公式
可知甲、乙带电粒子在磁场中做圆周运动的周期相等,故甲、乙带电粒子在磁场中运动的时间之比
故选D。
5.如图所示,平面直角坐标系 xOy 内,存在垂直纸面向里的匀强磁场, 磁感应强度 B=0.2T,原点O有一粒子源,能向纸面内各个方向释放出比荷为4×108C/kg 的正粒子,粒子初速度 v0=8×106m/s,不计粒子重力, 有一与 x轴成 45°角倾斜放置的足够长挡板跨越第一、三、四象限,P是挡板与 x 轴交点,,则挡板上被粒子打中的区域长度为( )
A.24cm B.16cm
C.20cm D.32cm
【答案】C
【解析】粒子源到挡板的距离
粒子在磁场中做匀速圆周运动,则有
解得
作出粒子打在挡板上的动态轨迹如图所示
则有
,
则挡板上被粒子打中的区域长度
故选C。
6.如图所示,空间存在垂直纸面向外、磁感应强度大小为的匀强磁场,粒子源可沿纸面向各个方向以相同的速率发射质量为、带电荷量为的正粒子,一薄光屏与纸面的交线为PQ,OQL,PQ2L,。要使左、右两侧所有点均能被粒子打中,则粒子的速率至少为( )
A. B. C. D.
【答案】D
【解析】要使粒子能打中左侧的所有位置,则粒子最小速度对应轨迹的直径为,由几何关系可得
由洛伦兹力作为向心力可得
可得对应的最小速度为
要使粒子能打中右侧的所有位置,轨迹如图所示
由几何关系可得
解得
由洛伦兹力作为向心力可得
联立解得对应的最小速度为
要使左、右两侧所有点均能被粒子打中,则粒子的速率至少为。
故选D。
7.如图所示,半径为的圆形区域有方向垂直纸面向外的匀强磁场,磁感应强度为,今有一质量为(不计重力),带电量为的离子以某一速度沿平行于直径的方向射入磁场区域,射入点与间距离为,( )
A.若该离子在磁场中的运动半径为,则该离子一定能够通过磁场圆的圆心
B.若该离子在磁场中的运动半径为,则该离子在磁场中入射点与出射点相距小于
C.若该离子能够通过磁场圆的圆心,则该离子在磁场中的运动时间为
D.若该离子在磁场中入射点与出射点相距最远,则该离子在磁场中的运动时间为
【答案】C
【解析】A.若该离子在磁场中的运动半径为,此时圆心在初速度垂直线段与ab交线处,设为,粒子轨迹如下图
由题意可知
而
故
故该粒子不经过磁场圆的圆心,故A错误;
BD.若该离子在磁场中的运动半径为,粒子轨迹如下图
根据几何知识可知粒子在磁场中的圆弧等于完整圆弧的,即
因此为等边三角形,故
此时该离子在磁场中入射点与出射点相距最远,根据洛伦兹力提供向心力可得该粒子做圆周运动周期为
则该离子在磁场中的运动时间为
故BD错误;
C.若该离子能够通过磁场圆的圆心,粒子轨迹如下图
由几何知识可知
根据
可得
解得
故为等边三角形,故
故粒子在整个磁场中的圆心角为,粒子在磁场中的圆弧等于完整圆弧的,故该离子在磁场中的运动时间为
故C正确。
故选C。
8.如图,一个边长为l的正方形区域内存在垂直于纸面向外的匀强磁场,磁感应强度大小为B。现有一质量为m、带电量为的粒子以某一速度从M点垂直于磁场射入,粒子恰好从的中点射出磁场。已知粒子射入磁场时的速度方向与的夹角为,不计粒子重力,粒子射入磁场的速度大小为( )
A. B. C. D.
【答案】B
【解析】根据题意作出粒子运动轨迹如图
由题可知,根据几何关系有
则
粒子运动的轨迹半径为
根据洛伦兹力提供向心力有
联立解得
故选B。
二、多选题
9.如图所示,空间中有一个底角均为的梯形,上底与腰长相等为L,梯形处于磁感应强度大小为B、垂直于纸面向外的匀强磁场中,现c点存在一个粒子源,可以源源不断射出速度方向沿cd,大小可变的电子,电子的比荷为k,为使电子能从ab边射出,速度大小可能为( )
A. B. C. D.
【答案】BC
【解析】能够从ab边射出的电子,半径最小为从b点射出,如图所示
由几何关系可知
半径最大为从a点射出,如图所示
由几何关系可知
由牛顿第二定律有
解得
则有
为使粒子从ab边射出磁场区域,粒子的速度范围为
故选BC。
10.如图所示,在平面内,以为圆心、为半径的圆内有垂直平面向外的匀强磁场,轴下方有垂直平面向里的匀强磁场,两区域磁感应强度大小均为,第四象限有一与轴成45°角倾斜放置的挡板,、两点在坐标轴上,且、两点间的距离大于,在圆形磁场的左侧的区间内,均匀分布着质量为、电荷量为的一簇带电粒子,当所有粒子均沿轴正向以相同的速度射入圆形磁场区域时,粒子偏转后都从点进入轴下方磁场,结果有一半粒子能打在挡板上。不计粒子重力、不考虑粒子间相互作用力,下列说法正确的是( )
A.所有粒子在圆形磁场中运动的时间相等
B.挡板端点的横坐标为
C.挡板上被粒子打中的区域长度为
D.从距离轴为处射入圆形磁场的粒子,离开磁场时的坐标为
【答案】BD
【解析】A.粒子在圆形磁场中运动的轨迹长度不同,所用时间不相等,选项A错误;
B.设一粒子自磁场边界A点进入磁场,该粒子由O点射出圆形磁场,轨迹如图所示
过A点做速度的垂线AB,做AO的垂直平分线与AB相交于点C,设该轨迹圆的半径长度为r,C为该轨迹圆的圆心。连接,CO,由全等三角形可证四边形为菱形,因此可得,由题知有一半粒子能打在挡板上,故从O点射出的沿x轴负方向的粒子和沿y轴负方向的粒子轨迹刚好与挡板相切,如图所示
过轨迹圆心D作挡板的垂线交于E点,得
即P点的横坐标为,B正确;
C.设打到挡板最左侧的粒子打在F点上,如图所示
,过O点作挡板的垂线交于G点,得
挡板上被粒子打中的区域长度为
C错误;
D.如图所示
从距离轴为的H处射入圆形磁场的粒子,从O点射出,轨迹圆心为I点,可得IO与x轴方向的夹角为,进入轴下方磁场的轨迹图如图可知离开磁场时的位置为K点,由几何关系可得,粒子离开磁场时的坐标为,D正确。
故选BD。
11.如图所示,圆形区域内存在着垂直于纸面向外的匀强磁场,两带电粒子(不计重力)沿直线AB方向从A点射入磁场中,分别从圆弧上的P、Q两点射出,则下列说法正确的是( )
A.若两粒子比荷相同,则从A 分别到P、Q 经历时间之比为1:2
B.若两粒子比荷相同,则从A 分别到P、Q经历时间之比为2:1
C.若两粒子比荷相同,则两粒子在磁场中速率之比为2:1
D.若两粒子速率相同,则两粒子的比荷之比为3:1
【答案】AD
【解析】AB.两粒子运动轨迹如图
粒子运动时间为
若两粒子比荷相同,则从A分别到P、Q 经历时间之比为
A正确;
C.设圆形区域半径为R,由题意可知,两粒子运动半径之比为
根据
若两粒子比荷相同,则两粒子在磁场中速率之比为
C错误;
D.同理C选项,若两粒子速率相同,则两粒子的比荷之比为3:1,D正确。
故选AD。
12.如图甲所示,用强磁场将百万开尔文的高温等离子体(等量的正离子和电子)约束在特定区域实现受控核聚变的装置叫托克马克。我国托克马克装置在世界上首次实现了稳定运行 100 秒的成绩。多个磁场才能实现磁约束,图乙为其中沿管道方向的一个磁场,越靠管的右侧磁场越强。不计离子重力,关于离子在图乙磁场中运动时,下列说法正确的是( )
A.离子从磁场右侧区域运动到左侧区域,磁场对其做负功
B.离子在磁场中运动时,磁场对其一定不做功
C.离子从磁场右侧区域运动到左侧区域,速度变大
D.离子由磁场的左侧区域向右侧区域运动时,运动半径减小
【答案】BD
【解析】AB.离子在磁场中运动时,由于洛伦兹力方向总是与速度方向垂直,可知磁场对其一定不做功,故A错误,B正确;
C.因洛伦兹力不做功,则离子从磁场右侧区域运动到左侧区域,速度不变,选项C错误;
D.离子在磁场中,由洛伦兹力提供向心力可得
解得
离子由磁场的左侧区域向右侧区域运动时,磁感应强度变大,可知离子运动半径减小,故D正确。
故选BD。
转载请注明出处卷子答案网-一个不只有答案的网站 » 2024届高考物理一轮复习讲义——磁场对运动电荷的作用(原卷版+解析版)