圆(压轴题)--中考数学历年中考真题考点分类专项训练
一、单选题
1.(2018·湖北武汉·统考中考真题)如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是( )
A. B. C. D.
【答案】B
【分析】连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,利用垂径定理得到OD⊥AB,则AD=BD=AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC和弧CD所在的圆为等圆,则根据圆周角定理得到,所以AC=DC,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF为正方形得到OF=EF=1,然后计算出CF后得到CE=BE=3,于是得到BC=3.
【详解】连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,
∵D为AB的中点,
∴OD⊥AB,
∴AD=BD=AB=2,
在Rt△OBD中,OD==1,
∵将弧沿BC折叠后刚好经过AB的中点D,
∴弧AC和弧CD所在的圆为等圆,
∴,
∴AC=DC,
∴AE=DE=1,
易得四边形ODEF为正方形,
∴OF=EF=1,
在Rt△OCF中,CF==2,
∴CE=CF+EF=2+1=3,
而BE=BD+DE=2+1=3,
∴BC=3,
故选B.
【点睛】本题考查了圆周角定理、垂径定理、切线的性质,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系,熟练掌握相关的定理和性质是解题的关键.
2.(2018·四川宜宾·统考中考真题)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为( )
A. B. C.34 D.10
【答案】D
【详解】分析:设点M为DE的中点,点N为FG的中点,连接MN,则MN、PM的长度是定值,利用三角形的三边关系可得出NP的最小值,再利用PF2+PG2=2PN2+2FN2即可求出结论.
详解:设点M为DE的中点,点N为FG的中点,连接MN交半圆于点P,此时PN取最小值.
∵DE=4,四边形DEFG为矩形,
∴GF=DE,MN=EF,
∴MP=FN=DE=2,
∴NP=MN-MP=EF-MP=1,
∴PF2+PG2=2PN2+2FN2=2×12+2×22=10.
故选D.
点睛:本题考查了点与圆的位置关系、矩形的性质以及三角形三变形关系,利用三角形三边关系找出PN的最小值是解题的关键.
3.(2017·贵州黔东南·中考真题)如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为( )
A.60° B.67.5° C.75° D.54°
【答案】A
【详解】解:如图,连接DF、BF.
∵FE⊥AB,AE=EB,
∴FA=FB,
∵AF=2AE,
∴AF=AB=FB,
∴△AFB是等边三角形,
∵AF=AD=AB,
∴点A是△DBF的外接圆的圆心,
∴∠FDB=∠FAB=30°,
∵四边形ABCD是正方形,
∴AD=BC,∠DAB=∠ABC=90°,∠ADB=∠DBC=45°,
∴∠FAD=∠FBC,
∴△FAD≌△FBC,
∴∠ADF=∠FCB=15°,
∴∠DOC=∠OBC+∠OCB=60°.
故选A.
【点睛】本题考查了等边三角形的判定,全等三角形的判定,正方形的性质,此题是一道综合题目,解决此题的关键是合理的推理正确的计算.
4.(2016·山东泰安·中考真题)如图,△ABC内接于⊙O,AB是⊙O的直径,∠B=30°,CE平分∠ACB交⊙O于E,交AB于点D,连接AE,则S△ADE:S△CDB的值等于( )
A.1: B.1: C.1:2 D.2:3
【答案】D
【分析】由AB是⊙O的直径,得到∠ACB=90°,根据已知条件得到,根据三角形的角平分线定理得到,求出AD=AB,BD=AB,过C作CE⊥AB于E,连接OE,由CE平分∠ACB交⊙O于E,得到OE⊥AB,求出OE=AB,CE=AB,根据三角形的面积公式即可得到结论.
【详解】解:∵AB是⊙O的直径,
∴∠ACB=90°,
∵∠B=30°,
∴,
∵CE平分∠ACB交⊙O于E,
∴,
∴AD=AB,BD=AB,
过C作CE⊥AB于E,连接OE,
∵CE平分∠ACB交⊙O于E,
∴,
∴OE⊥AB,
∴OE=AB,CE=AB,
∴S△ADE:S△CDB=(ADOE):(BDCE)
=(×ABAB):(×ABAB)
=2:3.
故选D
【点睛】考点:(1)圆周角定理;(2)三角形的角平分线定理;(3)三角形的面积的计算;(4)直角三角形的性质.
5.(2015·浙江金华·中考真题)如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是( )
A. B. C. D.2
【答案】C
【分析】设的半径是,则,根据是的平分线,求出,进而得出,再根据相似比求出,从而得到的值.
【详解】解:连接、、,如图所示:
设的半径是,则,
∵是的平分线,
∴,
∵,
∴,
∴,
∴,
∴,
∵,
∴,,
∴,
∴,
∴,即的值是,
故选:C.
【点睛】本题考查正多边形与圆的关系.解答本题的关键是熟练掌握正多边形的有关概念,并准确运用他们求线段长.
6.(2015·广西河池·统考中考真题)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是( )
A.6 B.8 C.10 D.12
【答案】A
【详解】∵直线l:y=kx+4与x轴、y轴分别交于A、B,
∴B(0,4),
∴OB=4,
在RT△AOB中,∠OAB=30°,
∴OA=OB=×4=12,
∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,
∴PM=PA,
设P(x,0),
∴PA=12-x,
∴⊙P的半径PM=PA=6-x,
∵x为整数,PM为整数,
∴x可以取0,2,4,6,8,10,6个数,
∴使得⊙P成为整圆的点P个数是6.
故选A.
【点睛】考点:1.切线的性质;2.一次函数图象上点的坐标特征.
7.(2019·四川宜宾·统考中考真题)如图,的顶点O是边长为2的等边的重心,的两边与的边交于E,F,,则与的边所围成阴影部分的面积是( )
A. B. C. D.
【答案】C
【分析】连接、,过点O作,垂足为N,由点O是等边三角形的内心可以得到,结合条件即可求出的面积,由,从而得到,进而可以证到,因而阴影部分面积等于的面积.
【详解】解:连接、,过点O作,垂足为N,
∵为等边三角形,
∴,
∵点O为的内心
∴,.
∴.
∴.,
∵,,
∴,
∴,
∴.
∵,
∴,即.
在和中,
,
∴.
∴
故选C.
【点睛】此题考查了等边三角形的性质、等腰三角形的性质、三角函数的定义、全等三角形的判定与性质、三角形的内心、三角形的内角和定理,有一定的综合性,作出辅助线构建全等三角形是解题的关键.
8.(2018·内蒙古赤峰·中考真题)如图,直线与x轴、y轴分别交于A、B两点,点P是以C(﹣1,0)为圆心,1为半径的圆上一点,连接PA,PB,则△PAB面积的最小值是( )
A.5 B.10 C.15 D.20
【答案】A
【分析】作CH⊥AB于H交⊙O于E、F.当点P与E重合时,△PAB的面积最小,求出EH、AB的长即可解决问题
【详解】作CH⊥AB于H交⊙O于E、F.连接BC.
∵A(4,0),B(0,3),∴OA=4,OB=3,AB=5.
∵S△ABC= AB CH=AC OB,∴AB CH=AC OB,∴5CH=(4+1)×3,解得:CH=3,∴EH=3﹣1=2.
当点P与E重合时,△PAB的面积最小,最小值5×2=5.
故选A.
【点睛】本题考查了一次函数图象上的点的坐标特征、一次函数的性质、直线与圆的位置关系等知识,解题的关键是学会添加常用辅助线,利用直线与圆的位置关系解决问题,属于中考填空题中的压轴题.
9.(2021·四川泸州·统考中考真题)如图,⊙O的直径AB=8,AM,BN是它的两条切线,DE与⊙O相切于点E,并与AM,BN分别相交于D,C两点,BD,OC相交于点F,若CD=10,则BF的长是
A. B. C. D.
【答案】A
【分析】过点D作DG⊥BC于点G,延长CO交DA的延长线于点H,根据勾股定理求得,即可得AD=BG=2,BC= 8,再证明△HAO≌△BCO,根据全等三角形的性质可得AH=BC=8,即可求得HD= 10;在Rt△ABD中,根据勾股定理可得;证明△DHF∽△BCF,根据相似三角形的性质可得,由此即可求得.
【详解】过点D作DG⊥BC于点G,延长CO交DA的延长线于点H,
∵AM,BN是它的两条切线,DE与⊙O相切于点E,
∴AD=DE,BC=CE,∠DAB=∠ABC=90°,
∵DG⊥BC,
∴四边形ABGD为矩形,
∴AD=BG,AB=DG=8,
在Rt△DGC中,CD=10,
∴,
∵AD=DE,BC=CE,CD=10,
∴CD= DE+CE = AD+BC =10,
∴AD+BG +GC=10,
∴AD=BG=2,BC=CG+BG=8,
∵∠DAB=∠ABC=90°,
∴AD∥BC,
∴∠AHO=∠BCO,∠HAO=∠CBO,
∵OA=OB,
∴△HAO≌△BCO,
∴AH=BC=8,
∵AD=2,
∴HD=AH+AD=10;
在Rt△ABD中,AD=2,AB=8,
∴,
∵AD∥BC,
∴△DHF∽△BCF,
∴,
∴,
解得,.
故选A.
【点睛】本题是圆的综合题,考查了切线长定理、勾股定理、全等三角形的判定及性质、相似三角形的判定于性质,熟练运用相关知识是解决问题的关键.
10.(2021·四川眉山·统考中考真题)如图,在以为直径的中,点为圆上的一点,,弦于点,弦交于点,交于点.若点是的中点,则的度数为( )
A.18° B.21° C.22.5° D.30°
【答案】C
【分析】根据直径所对的圆周角是,可知,根据,可知、的度数,根据直角三角形斜边上的中线等于斜边的一半可知,为等腰三角形,再根据可求得的度数.
【详解】解:∵为的直径,
∴,
∵,
∴,,
∵点是的中点,
∴,
∴,
∵,
∴,
又∵,
∴,
∵,
∴,
∴,
∴,
∴,
故选:C.
【点睛】本题主要考查圆周角定理,垂径定理,相似三角形,直角三角形斜边上中线等知识点,找出图形中几个相似三角形是解题关键.
11.(2021·四川泸州·统考中考真题)在锐角ABC中,∠A,∠B,∠C所对的边分别为a,b,c,有以下结论:(其中R为ABC的外接圆半径)成立.在ABC中,若∠A=75°,∠B=45°,c=4,则ABC的外接圆面积为( )
A. B. C. D.
【答案】A
【分析】方法一:先求出∠C,根据题目所给的定理, , 利用圆的面积公式S圆=.
方法二:设△ABC的外心为O,连结OA,OB,过O作OD⊥AB于D,由三角形内角和可求∠C=60°,由圆周角定理可求∠AOB=2∠C=120°,由等腰三角形性质,∠OAB=∠OBA=,由垂径定理可求AD=BD=,利用三角函数可求OA=,利用圆的面积公式S圆=.
【详解】解:方法一:∵∠A=75°,∠B=45°,
∴∠C=180°-∠A-∠B=180°-75°-45°=60°,
有题意可知,
∴,
∴S圆=.
方法二:设△ABC的外心为O,连结OA,OB,过O作OD⊥AB于D,
∵∠A=75°,∠B=45°,
∴∠C=180°-∠A-∠B=180°-75°-45°=60°,
∴∠AOB=2∠C=2×60°=120°,
∵OA=OB,
∴∠OAB=∠OBA=,
∵OD⊥AB,AB为弦,
∴AD=BD=,
∴AD=OAcos30°,
∴OA=,
∴S圆=.
故答案为A.
【点睛】本题考查三角形的外接圆,三角形内角和,圆周角定理,等腰三角形性质,垂径定理,锐角三角函数,圆的面积公式,掌握三角形的外接圆,三角形内角和,圆周角定理,等腰三角形性质,垂径定理,锐角三角函数,圆的面积公式是解题关键.
12.(2020·四川·统考中考真题)已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为( )
A.2 B.2﹣2 C.2+2 D.2
【答案】B
【分析】根据等腰直角三角形的性质得到斜边AB=4,由已知条件得到点P在以C为圆心,PC为半径的圆上,当点P在斜边AB的中线上时,PM的值最小,于是得到结论.
【详解】解:∵等腰直角三角形ABC的腰长为4,
∴斜边AB=4,
∵点P为该平面内一动点,且满足PC=2,
∴点P在以C为圆心,PC为半径的圆上,
当点P在斜边AB的中线上时,PM的值最小,
∵△ABC是等腰直角三角形,
∴CM=AB=2,
∵PC=2,
∴PM=CM﹣CP=2﹣2,
故选:B.
【点睛】本题考查线段最小值问题,涉及等腰三角形的性质和点到圆的距离,解题的关键是能够画出图形找到取最小值的状态然后求解.
13.(2020·山东临沂·中考真题)如图,在中,为直径,,点D为弦的中点,点E为上任意一点,则的大小可能是( )
A. B. C. D.
【答案】C
【分析】连接OD、OE,先求出∠COD=40°,∠BOC=100°,设∠BOE=x,则∠COE=100°-x,∠DOE=100°-x+40°;然后运用等腰三角形的性质分别求得∠OED和∠COE,最后根据线段的和差即可解答.
【详解】解:连接OD、OE
∵OC=OA
∴△OAC是等腰三角形
∵,点D为弦的中点
∴∠DOC=40°,∠BOC=100°
设∠BOE=x,则∠COE=100°-x,∠DOE=100°-x+40°
∵OC=OE,∠COE=100°-x
∴∠OEC=
∵OD<OE,∠DOE=100°-x+40°=140°-x
∴∠OED<
∴∠CED>∠OEC-∠OED==20°.
又∵∠CED<∠ABC=40°,
故答案为C.
【点睛】本题考查了圆的性质、等腰三角形的性质等知识点,正确作出辅助线、构造等腰三角形是解答本题的关键.
14.(2020·浙江温州·统考中考真题)如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为( )
A.1 B.2 C. D.
【答案】D
【分析】连接OB,由题意可知,∠OBD=90°;再说明△OAB是等边三角形,则∠AOB =60°;再根据直角三角形的性质可得∠ODB=30°,最后解三角形即可求得BD的长.
【详解】解:连接OB
∵菱形OABC
∴OA=AB
又∵OB=OA
∴OB=OA=AB
∴△OAB是等边三角形
∵BD是圆O的切线
∴∠OBD=90°
∴∠AOB=60°
∴∠ODB=30°
∴在Rt△ODB中,OD=2OB=2,BD=OD·sin∠ODB=2× =
故答案为D.
【点睛】本题考查了菱形的性质、圆的切线的性质、等边三角形的判定和性质以及解直角三角形,其中证明△OAB是等边三角形是解答本题的关键.
15.(2019·广西玉林·统考中考真题)如图,在中,,,,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是( )
A.5 B.6 C.7 D.8
【答案】B
【分析】设⊙O与AC相切于点D,连接OD,作垂足为P交⊙O于F,此时垂线段OP最短,PF最小值为,当N在AB边上时,M与B重合时,MN经过圆心,经过圆心的弦最长,根据图形与圆的性质即可求解.
【详解】如图,设⊙O与AC相切于点D,连接OD,作垂足为P交⊙O于F,
此时垂线段OP最短,PF最小值为,
∵,,
∴
∵,
∴
∵点O是AB的三等分点,
∴,,
∴,
∵⊙O与AC相切于点D,
∴,
∴,
∴,
∴,
∴MN最小值为,
如图,当N在AB边上时,M与B重合时,MN经过圆心,经过圆心的弦最长,
MN最大值,
,
∴MN长的最大值与最小值的和是6.
故选B.
【点睛】此题主要考查圆与三角形的性质,解题的关键是熟知圆的性质及直角三角形的性质.
16.(2022·江苏镇江·统考中考真题)如图,在等腰中,,BC= ,同时与边的延长线、射线相切,的半径为3.将绕点按顺时针方向旋转,、的对应点分别为、,在旋转的过程中边所在直线与相切的次数为( )
A.1 B.2 C.3 D.4
【答案】C
【分析】首先以A为圆心,以BC边的中线为半径画圆,可得⊙A的半径为3,计算出OA的长度,可知⊙O与⊙A相切,根据两个相切圆的性质,即可得到答案.
【详解】解:如图:
作AD⊥BC,以A为圆心,以AD为半径画圆
∵AC、AB所在的直线与⊙O相切,令切点分别为P、Q,连接OP、OQ
∴AO平分∠PAQ
∵∠CAB=120°
∴∠PAO=30°
∵OP=3
∴AO= =6
∵∠BAC=120°,AB=AC
∴∠ACB=30°,CD= BC=
∴AD= =3
∴⊙A的半径为3,
∴⊙O与⊙A的半径和为6
∵AO=6
∴⊙O与⊙A相切
∵AD⊥BC
∴BC所在的直线是⊙A的切线
∴BC所在的直线与⊙O相切
∴当=360°时,BC所在的直线与⊙O相切
同理可证明当=180°时,所在的直线与⊙O相切.
当⊥AO时,即=90°时,所在的直线与⊙O相切.
∴当为90°、180°、360°时,BC所在的直线与⊙O相切
故答案选C.
【点睛】本题主要考查了圆的切线,涉及到等腰三角形的性质、两圆的位置关系和特殊角的三角函数等知识,熟练掌握相关知识,精准识图并准确推断图形的运动轨迹,进行合理论证是本题的解题关键.
17.(2022·安徽·统考中考真题)已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△PAB,△PBC,△PCA的面积分别记为,,,.若,则线段OP长的最小值是( )
A. B. C. D.
【答案】B
【分析】根据,可得,根据等边三角形的性质可求得△ABC中AB边上的高和△PAB中AB边上的高的值,当P在CO的延长线时,OP取得最小值,OP=CP-OC,过O作OE⊥BC,求得OC=,则可求解.
【详解】解:如图,
,,
∴
=
=
=
==,
∴,
设△ABC中AB边上的高为,△PAB中AB边上的高为,
则,
,
∴,
∴,
∵△ABC是等边三角形,
∴,
,
∴点P在平行于AB,且到AB的距离等于的线段上,
∴当点P在CO的延长线上时,OP取得最小值,
过O作OE⊥BC于E,
∴,
∵O是等边△ABC的中心,OE⊥BC
∴∠OCE=30°,CE=
∴OC=2OE
∵,
∴,
解得OE=,
∴OC=,
∴OP=CP-OC=.
故选B.
【点睛】本题考查了等边三角形的性质,勾股定理,三角形的面积等知识,弄清题意,找到P点的位置是解题的关键.
18.(2021·广西梧州·统考中考真题)在平面直角坐标系中,已知点A(0,1),B(0,﹣5),若在x轴正半轴上有一点C,使∠ACB=30°,则点C的横坐标是( )
A.34 B.12 C.6+3 D.6
【答案】A
【分析】如图,作的外接圆 连接 过作轴于 作轴于 则四边形是矩形,再证明是等边三角形,再分别求解即可得到答案.
【详解】解:如图,作的外接圆 连接 过作轴于 作轴于 则四边形是矩形,
是等边三角形,
故选:
【点睛】本题考查的是坐标与图形,三角形的外接圆的性质,圆周角定理,等边三角形的判定与性质,矩形的判定与性质,勾股定理分应用,灵活应用以上知识解题是解题的关键.
19.(2021·湖南娄底·统考中考真题)如图,直角坐标系中,以5为半径的动圆的圆心A沿x轴移动,当⊙与直线只有一个公共点时,点A的坐标为( )
A. B. C. D.
【答案】D
【分析】当⊙与直线只有一个公共点时,则此时⊙A与直线相切,(需考虑左右两侧相切的情况);设切点为,此时点同时在⊙A与直线上,故可以表示出点坐标,过点作,则此时,利用相似三角形的性质算出长度,最终得出结论.
【详解】如下图所示,连接,过点作,
此时点坐标可表示为,
∴,,
在中,,
又∵半径为5,
∴,
∵,
∴,
则,
∴,
∴,
∵左右两侧都有相切的可能,
∴A点坐标为,
故选:D.
【点睛】本题考查的是直线与圆的位置关系,熟知相似三角形的判定与性质是解答此题的关键.
20.(2021·湖北鄂州·统考中考真题)如图,中,,,.点为内一点,且满足.当的长度最小时,的面积是( )
A.3 B. C. D.
【答案】D
【分析】由题意知,又长度一定,则点P的运动轨迹是以中点O为圆心,长为半径的圆弧,所以当B、P、O三点共线时,BP最短;在中,利用勾股定理可求BO的长,并得到点P是BO的中点,由线段长度即可得到是等边三角形,利用特殊三边关系即可求解.
【详解】解:
取中点O,并以O为圆心,长为半径画圆
由题意知:当B、P、O三点共线时,BP最短
点P是BO的中点
在中,
是等边三角形
在中,
.
【点睛】本题主要考查动点的线段最值问题、点与圆的位置关系和隐形圆问题,属于动态几何综合题型,中档难度.解题的关键是找到动点P的运动轨迹,即隐形圆.
二、填空题
21.(2018·广东韶关·中考真题)如图,矩形中,,,以为直径的半圆与相切于点,连接,则阴影部分的面积为__.(结果保留
【答案】π.
【分析】如图所示,连接OE交BD于点F,利用切线的性质得OD=2,OE⊥BC,易得四边形OECD为正方形,再证△EFB≌△OFD,即可将阴影部分面积转化为扇形OED的面积,最后利用扇形面积公式求解即可得出答案.
【详解】如图所示,连接OE交BD于点F,
∵以AD为直径的半圆O与BC相切于点E,
∴OD=2,OE⊥BC,
∴OE=OD=2,
在矩形中,
∵
∴四边形OECD为正方形,
∴CE=OD=2,
∴BE=BC-CE=2,
∴BE=DO,
∵AD//BC,
∴
∴△EFB≌△OFD,
∴阴影部分的面积= .
故答案为π.
【点睛】本题考查了切线的性质、矩形的性质、正方形的判定和性质、全等三角形的判定和性质、扇形的面积公式等知识.正确添加辅助线、仔细识图从中得到阴影部分面积的求法是解题的关键.
22.(2016·四川泸州·统考中考真题)如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______.
【答案】6
【分析】首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.
【详解】∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),
∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,
∴AB=AC,
∵∠BPC=90°,
∴PA=AB=AC=a,
如图延长AD交⊙D于P′,此时AP′最大,
∵A(1,0),D(4,4),
∴AD=5,
∴AP′=5+1=6,
∴a的最大值为6.
故答案为6.
【点睛】圆外一点到圆上一点的距离最大值为点到圆心的距离加半径,最小值为点到圆心的距离减去半径.
23.(2018·湖北咸宁·统考中考真题)如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA=OB=a,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A关于直线OM′的对称点C,画直线BC交OM′于点D,连接AC,AD,有下列结论:
①AD=CD;
②∠ACD的大小随着α的变化而变化;
③当α=30°时,四边形OADC为菱形;
④△ACD面积的最大值为a2;
其中正确的是_____.(把你认为正确结论的序号都填上).
【答案】①③④
【详解】【分析】①根据对称的性质:对称点的连线被对称轴垂直平分可得:OM'是AC的垂直平分线,再由垂直平分线的性质可作判断;
②以O为圆心,以OA为半径作⊙O,交AO的延长线于E,连接BE,则A、B、C都在⊙O上,根据四点共圆的性质得:∠ACD=∠E=60°,说明∠ACD是定值,不会随着α的变化而变化;
③当α=30°时,即∠AOD=∠COD=30°,证明△AOC是等边三角形和△ACD是等边三角形,得OC=OA=AD=CD,可作判断;
④先证明△ACD是等边三角形,当AC最大时,△ACD的面积最大,当AC为直径时最大,根据面积公式计算后可作判断.
【详解】①∵A、C关于直线OM'对称,
∴OM'是AC的垂直平分线,
∴CD=AD,故①正确;
②连接OC,
由①知:OM'是AC的垂直平分线,∴OC=OA,
∴OA=OB=OC,
以O为圆心,以OA为半径作⊙O,交AO的延长线于E,连接BE,
则A、B、C都在⊙O上,
∵∠MON=120°,
∴∠BOE=60°,
∵OB=OE,
∴△OBE是等边三角形,
∴∠E=60°,
∵A、C、B、E四点共圆,
∴∠ACD=∠E=60°,故②不正确;
③当α=30°时,即∠AOD=∠COD=30°,
∴∠AOC=60°,
∴△AOC是等边三角形,
∴∠OAC=60°,OC=OA=AC,
由①得:CD=AD,
∴∠CAD=∠ACD=∠CDA=60°,
∴△ACD是等边三角形,
∴AC=AD=CD,
∴OC=OA=AD=CD,
∴四边形OADC为菱形,故③正确;
④∵CD=AD,∠ACD=60°,
∴△ACD是等边三角形,
当AC最大时,△ACD的面积最大,
∵AC是⊙O的弦,即当AC为直径时最大,此时AC=2OA=2a,α=90°,
∴△ACD面积的最大值是:AC2=,故④正确,
所以本题结论正确的有:①③④,
故答案为①③④.
【点睛】本题考查了轴对称的性质、圆内接四边形的性质、等边三角形的判定与性质、菱形的判定等,综合性较强,有一定的难度,正确添加辅助线构建图形并能灵活应用相关知识是解题的关键.
24.(2018·黑龙江伊春·中考真题)如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为_____.
【答案】2-2
【分析】作DC关于AB的对称点D′C′,以BC中的O为圆心作半圆O,连D′O分别交AB及半圆O于P、G.将PD+PG转化为D′G找到最小值.
【详解】如图:
取点D关于直线AB的对称点D′,以BC中点O为圆心,OB为半径画半圆,
连接OD′交AB于点P,交半圆O于点G,连BG,连CG并延长交AB于点E,
由以上作图可知,BG⊥EC于G,
PD+PG=PD′+PG=D′G,
由两点之间线段最短可知,此时PD+PG最小,
∵D′C’=4,OC′=6,
∴D′O=,
∴D′G=-2,
∴PD+PG的最小值为-2,
故答案为-2.
【点睛】本题考查了轴对称的性质、直径所对的圆周角是直角、线段和的最小值问题等,综合性较强,能灵活利用相关知识正确添加辅助线是解题的关键.通常解此类问题都是将线段之和转化为固定两点之间的线段和最短.
25.(2018·浙江嘉兴·统考中考真题)如图,在矩形中,,,点在上,,点在边上一动点,以为斜边作.若点在矩形的边上,且这样的直角三角形恰好有两个,则的值是__________.
【答案】0或或4
【详解】【分析】在点F的运动过程中分别以EF为直径作圆,观察圆和矩形矩形边的交点个数即可得到结论.
【解答】当点F与点A重合时,以为斜边恰好有两个,符合题意.
当点F从点A向点B运动时,
当时,共有4个点P使是以为斜边.
当时,有1个点P使是以为斜边.
当时,有2个点P使是以为斜边.
当时,有3个点P使是以为斜边.
当时,有4个点P使是以为斜边.
当点F与点B重合时,以为斜边恰好有两个,符合题意.
故答案为0或或4
【点评】考查圆周角定理,熟记直径所对的圆周角是直角是解题的关键.注意分类讨论思想在数学中的应用.
26.(2017·甘肃兰州·中考真题)如图,在平面直角坐标系中,平行四边形的顶点A,B的坐标分别是,,动点P在直线上运动,以点P为圆心,长为半径的随点P运动,当与四边形的边相切时,P点的坐标为__.
【答案】(0,0)或或.
【分析】分四种情况,根据直线与相切的性质和一次函数图像上点的坐标特点,画出图形,分析作答即可.
【详解】解:①当与BC相切时,∵动点P在直线上,
∴P与O重合,此时圆心P到BC的距离为OB,
∴P(0,0).
②∵平行四边形的顶点A,B的坐标分别是,,
∴点C的坐标是,
∴直线的解析式是,
∵直线的解析式是,
∴,
如图1中,当与OC相切时,则,是等腰三角形,作轴于E,则,易知P的纵坐标为1,可得P.
③如图2中,当与OA相切时,则点P到点B的距离与点P到x轴的距离相等,可得,
解得或,
∵,
∴不会与OA相切,
∴不合题意,
∴.
④如图3中,当与AB相切时,设线段AB与直线OP的交点为G,此时,
∵,
∴不成立,
∴此种情形,不存在P.
综上所述,满足条件的P的坐标为(0,0)或或.
故答案为:(0,0)或或.
【点睛】本题考查了切线的性质、一次函数图象上点的坐标特征等知识,正确分类、熟练掌握直线与相切的性质是解题的关键.
27.(2019·湖南岳阳·统考中考真题)如图,AB为⊙O的直径,点P为AB延长线上的一点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE的垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是___________.(写出所有正确结论的序号)
①AM平分∠CAB;
②AM2=AC AB;
③若AB=4,∠APE=30°,则的长为;
④若AC=3,BD=1,则有CM=DM=.
【答案】①②④
【分析】连接OM,由切线的性质可得OM⊥PC,继而得OM∥AC,再根据平行线的性质以及等边对等角即可求得∠CAM=∠OAM,由此可判断①;通过证明△ACM∽△AMB,根据相似三角形的对应边成比例可判断②;求出∠MOP=60°,利用弧长公式求得的长可判断③;由BD⊥PC,AC⊥PC,OM⊥PC,可得BD∥AC//OM,继而可得PB=OB=AO,PD=DM=CM,进而有OM=2BD=2,在Rt△PBD中,PB=BO=OM=2,利用勾股定理求出PD的长,可得CM=DM=DP=,由此可判断④.
【详解】连接OM,
∵PE为⊙O的切线,
∴OM⊥PC,
∵AC⊥PC,
∴OM∥AC,
∴∠CAM=∠AMO,
∵OA=OM,
∠OAM=∠AMO,
∴∠CAM=∠OAM,即AM平分∠CAB,故①正确;
∵AB为⊙O的直径,
∴∠AMB=90°,
∵∠CAM=∠MAB,∠ACM=∠AMB,
∴△ACM∽△AMB,
∴,
∴AM2=AC AB,故②正确;
∵∠APE=30°,
∴∠MOP=∠OMP﹣∠APE=90°﹣30°=60°,
∵AB=4,
∴OB=2,
∴的长为,故③错误;
∵BD⊥PC,AC⊥PC,OM⊥PC,
∴BD∥AC//OM,
∴△PBD∽△PAC,
∴,
∴PB=PA,
又∵AO=BO,AO+BO=AB,AB+PB=PA,
∴PB=OB=AO,
又∵BD∥AC//OM,
∴PD=DM=CM,
∴OM=2BD=2,
在Rt△PBD中,PB=BO=OM=2
∴PD==,
∴CM=DM=DP=,故④正确,
故答案为①②④.
【点睛】本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,综合性较强,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
28.(2019·湖北荆门·统考中考真题)如图,等边三角形的边长为2,以为圆心,1为半径作圆分别交,边于,,再以点为圆心,长为半径作圆交边于,连接,,那么图中阴影部分的面积为________.
【答案】 .
【分析】过作于,于,根据等边三角形的性质得到,求得,根据三角形的面积和扇形的面积公式即可得到结论.
【详解】过作于,于,
等边三角形的边长为2,,
,
,
,
,
图中阴影部分的面积
,
故答案为.
【点睛】本题考查了扇形的面积的计算,等边三角形的性质,正确的作出辅助线是解题的关键.
29.(2019·河南·统考中考真题)如图,在扇形AOB中,,半径OC交弦AB于点D,且.若,则阴影部分的面积为_____.
【答案】
【分析】根据题意,作出合适的辅助线,然后根据图形可知阴影部分的面积是的面积与扇形OBC的面积之和再减去的面积,本题得以解决.
【详解】
解:作于点F,
在扇形AOB中,,半径OC交弦AB于点D,且.,
,,,
,
,,,,
,
阴影部分的面积是:,
故答案为.
【点睛】本题考查扇形面积的计算,解答本题的关键是明确题意,利用数形结合的思想解答.
30.(2019·重庆·统考中考真题)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为______.(结果保留)
【答案】
【分析】根据菱形的性质得到AC⊥BD,∠AB0=∠ABC=30°,∠BAD=∠BCD=120°,根据直角三角形的性质求出AC、BD,根据扇形面积公式、菱形面积公式计算即可.
【详解】解:∵四边形ABCD是菱形,
∴AC⊥BD,∠AB0=∠ABC=30°,∠BAD=∠BCD=120°
∴AO=AB=1,由勾股定理得,
又∵AC=2,BD=2,
∴调影部分的面积为:
故答案为
【点睛】本题考查的是扇形面积计算、菱形的性质,掌握扇形面积公式是解题的关键.
三、解答题
31.(2022·湖北荆门·统考中考真题)如图,AB为⊙O的直径,点C在直径AB上(点C与A,B两点不重合),OC=3,点D在⊙O上且满足AC=AD,连接DC并延长到E点,使BE=BD.
(1)求证:BE是⊙O的切线;
(2)若BE=6,试求cos∠CDA的值.
【答案】(1)证明见解析
(2)
【分析】(1)根据直径所对的圆周角是直角可得∠ADB=90°,从而可得∠BDE+∠ADC=90°,根据等腰三角形的性质以及对顶角相等可得∠ECB=∠ADC,然后根据等腰三角形的性质可得∠E=∠BDE,从而可得∠E+∠BCE=90°,最后利用三角形内角和定理可得∠EBC=90°,即可解答;
(2)设⊙O的半径为r,则AC=AD=3+r,在Rt△ABD中,利用勾股定理可求出r=5,从而求出BC=2,然后在Rt△EBC中,根据勾股定理可求出EC的长,从而利用锐角三角函数的定义进行计算即可解答.
【详解】(1)证明:∵AB为⊙O的直径,
∴∠ADB=90°,
∴∠BDE+∠ADC=90°,
∵AC=AD,
∴∠ACD=∠ADC,
∵∠ACD=∠ECB,
∴∠ECB=∠ADC,
∵EB=DB,
∴∠E=∠BDE,
∴∠E+∠BCE=90°,
∴∠EBC=180°﹣(∠E+∠ECB)=90°,
∵OB是⊙O的半径,
∴BE是⊙O的切线;
(2)解:设⊙O的半径为r,
∵OC=3,
∴AC=AD=AO+OC=3+r,
∵BE=6,
∴BD=BE=6,
在Rt△ABD中,BD2+AD2=AB2,
∴36+(r+3)2=(2r)2,
∴r1=5,r2=﹣3(舍去),
∴BC=OB﹣OC=5﹣3=2,
在Rt△EBC中,EC===2,
∴cos∠ECB===,
∴cos∠CDA=cos∠ECB=,
∴cos∠CDA的值为.
【点睛】本题考查了切线的判定与性质,解直角三角形,熟练掌握切线的判定与性质,以及锐角三角函数的定义是解题的关键.
32.(2022·四川绵阳·统考中考真题)如图,AB为⊙O的直径,C为圆上的一点,D为劣弧的中点,过点D作⊙O的切线与AC的延长线交于点P,与AB的延长线交于点F,AD与BC交于点E.
(1)求证:;
(2)若⊙O的半径为,DE=1,求AE的长度;
(3)在(2)的条件下,求的面积.
【答案】(1)见解析
(2)3
(3)
【分析】(1)连接,利用垂径定理可得,由为⊙O的切线可得,由平行线的判定定理可得结论;
(2)连接,,设,则,由可得,,在中,利用勾股定理可得,即;
(3)连接,,设与交于点,利用可得,在中利用勾股定理可得,所以,又证明四边形为矩形,所以面积为矩形面积的一半,进而可得的面积.
【详解】(1)解:证明:如图,连接,
为劣弧的中点,
,
,
又为⊙O的切线,
,
;
(2)解:如图,连接,,
设,则,
为劣弧的中点,
,
,
又,
,
,
,
,
为⊙O的直径,
,
又⊙O的半径为,
,
由得,
解得或(舍),
;
(3)解:如图,设与交于点,
由(2)知,
,,
在中,
,
,
,
,
又,
,
,
,
,
为⊙O的直径,
,
由(1)可知,,
四边形为矩形,
,,
.
【点睛】本题考查了圆的有关性质,圆周角定理,垂径定理及其推论,勾股定理,相似三角形的判定与性质,圆的切线的判定与性质,矩形的判定与性质,平行线的判定与性质,熟练掌握这些性质并能灵活运用是解题的关键.
33.(2022·广西柳州·统考中考真题)如图,已知AB是⊙O的直径,点E是⊙O上异于A,B的点,点F是的中点,连接AE,AF,BF,过点F作FC⊥AE交AE的延长线于点C,交AB的延长线于点D,∠ADC的平分线DG交AF于点G,交FB于点H.
(1)求证:CD是⊙O的切线;
(2)求sin∠FHG的值;
(3)若GH=,HB=2,求⊙O的直径.
【答案】(1)见解析
(2)
(3)⊙O的直径为
【分析】(1)连接OF,先证明OFAC,则∠OFD=∠C=,根据切线的判定定理可得出结论.
(2)先证∠DFB=∠OAF,∠ADG=∠FDG,根据三角形的一个外角等于和它不相邻的两个内角之和得出∠FGH=∠FHG=,从而可求出sin∠FHG的值.
(3)先在△GFH中求出FH的值为4,根据等积法可得,再证△DFB∽△DAF,根据对应边成比例可得,又由角平分线的性质可得,从而可求出AG、AF.在Rt△AFB中根据勾股定理可求出AB的长,即⊙O的直径.
【详解】(1)证明:连接OF.
∵OA=OF,
∴∠OAF=∠OFA,
∵
∴∠CAF=∠FAB,
∴∠CAF=∠AFO,
∴OFAC,
∵AC⊥CD,
∴OF⊥CD,
∵OF是半径,
∴CD是⊙O的切线.
(2)∵AB是直径,
∴∠AFB=90°,
∵OF⊥CD,
∴∠OFD=∠AFB=90°,
∴∠AFO=∠DFB,
∵∠OAF=∠OFA,
∴∠DFB=∠OAF,
∵GD平分∠ADF,
∴∠ADG=∠FDG,
∵∠FGH=∠OAF+∠ADG,∠FHG=∠DFB+∠FDG,
∴∠FGH=∠FHG=45°,
∴sin∠FHG=
(3)解:过点H作HM⊥DF于点M,HN⊥AD于点N.
∵HD平分∠ADF,
∴HM=HN,
S△DHF∶S△DHB= FH∶HB=DF ∶DB
∵△FGH是等腰直角三角形,GH=
∴FH=FG=4,
∴
设DB=k,DF=2k,
∵∠FDB=∠ADF,∠DFB=∠DAF,
∴△DFB∽△DAF,
∴DF2=DB DA,
∴AD=4k,
∵GD平分∠ADF
∴
∴AG=8,
∵∠AFB=90°,AF=12,FB=6,
∴⊙O的直径为
【点睛】本题是一道综合性题目,考查了圆的相关性质、切线的判定、相似三角形的判定和性质、角平分线性、勾股定理等知识,熟练掌握以上知识是解题的关键.
34.(2022·广西贵港·中考真题)如图,在中,,点D是边的中点,点O在边上,⊙经过点C且与边相切于点E,.
(1)求证:是⊙的切线;
(2)若,,求⊙的半径及的长.
【答案】(1)见解析
(2),
【分析】(1)作,垂足为H,连接,先证明是的平分线,然后由切线的判定定理进行证明,即可得到结论成立;
(2)设,由勾股定理可求,设的半径为r,然后证明,结合勾股定理即可求出答案.
【详解】(1)证明:如图,作,垂足为H,连接,
∵,D是的中点,
∴,
∴,
∵,
又∵,
∴∠BDC=2∠FAC,
∴,即是的平分线,
∵O在上,与相切于点E,
∴,且是的半径,
∵AC平分∠FAB,OH⊥AF,
∴是的半径,
∴是的切线.
(2)解:如(1)图,∵在中,,
∴可设,
∴,
则,
设的半径为r,则,
∵,
∴,
∴,即,则,
在Rt△AOE中,AO=5,OE=3,
由勾股定理得,又,
∴,
在中,由勾股定理得:.
【点睛】本题考查了三角函数,切线的判定和性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行证明.
35.(2022·四川广安·统考中考真题)如图,AB为⊙O的直径,D、E是⊙O上的两点,延长AB至点C,连接CD,∠BDC=∠BAD.
(1)求证:CD是⊙O的切线.
(2)若tan∠BED=,AC=9,求⊙O的半径.
【答案】(1)见详解
(2)
【分析】(1)连接OD,只要证明,则有,即可证明结论成立;
(2)由圆周角定理,求得,然后证明△ACD∽△DCB,求出CD的长度,再根据勾股定理,即可求出答案.
【详解】(1)证明:连接OD,如图
∵AB为⊙O的直径,
∴,
∴,
∵OA=OD,
∴,
∵∠BDC=∠BAD,
∴,
∴,
∴,
∴CD是⊙O的切线.
(2)解:∵,
∴,
∵△ABD是直角三角形,
∴,
∵,,
∴△ACD∽△DCB,
∴,
∵,
∴,
∴,
在直角△CDO中,设⊙O的半径为,则
,
∴,
解得:;
∴⊙O的半径为;
【点睛】本题考查了圆周角定理,切线的判定定理,勾股定理,相似三角形的判定和性质等知识,解题的关键是熟练掌握所学的知识,正确的理解题意,从而进行解题.
36.(2022·湖北恩施·统考中考真题)如图,P为⊙O外一点,PA、PB为⊙O的切线,切点分别为A、B,直线PO交⊙O于点D、E,交AB于点C.
(1)求证:∠ADE=∠PAE.
(2)若∠ADE=30°,求证:AE=PE.
(3)若PE=4,CD=6,求CE的长.
【答案】(1)见解析
(2)见解析
(3)CE的长为2.
【分析】(1)连接OA,根据切线的性质得到∠OAE+∠PAE=90°,根据圆周角定理得到∠OAE+∠DAO=90°,据此即可证明∠ADE=∠PAE;
(2)由(1)得∠ADE=∠PAE =30°,∠AED =60°,利用三角形外角的性质得到∠APE=∠AED-∠PAE =30°,再根据等角对等边即可证明AE=PE;
(3)证明Rt△EAC∽Rt△ADC,Rt△OAC∽Rt△APC,推出DC×CE=OC×PC,设CE=x,据此列方程求解即可.
【详解】(1)证明:连接OA,
∵PA为⊙O的切线,
∴OA⊥PA,即∠OAP=90°,
∴∠OAE+∠PAE=90°,
∵DE为⊙O的直径,
∴∠DAE=90°,即∠OAE+∠DAO=90°,
∴∠DAO=∠PAE,
∵OA=OD,
∴∠DAO=∠ADE,
∴∠ADE=∠PAE;
(2)证明:∵∠ADE=30°,
由(1)得∠ADE=∠PAE =30°,∠AED=90°-∠ADE=60°,
∴∠APE=∠AED-∠PAE =30°,
∴∠APE=∠PAE =30°,
∴AE=PE;
(3)解:∵PA、PB为⊙O的切线,切点分别为A、B,直线PO交AB于点C.
∴AB⊥PD,
∵∠DAE=90°,∠OAP=90°,
∴∠DAC+∠CAE=90°,∠OAC+∠PAC=90°,
∵∠DAC+∠D=90°,∠OAC+∠AOC=90°,
∴∠CAE=∠D,∠PAC=∠AOC,
∴Rt△EAC∽Rt△ADC,Rt△OAC∽Rt△APC,
∴
∴AC2=DC×CE,AC2=OC×PC,
即DC×CE=OC×PC,
设CE=x,则DE=6+x,OE=3+,OC=3+-x=3-,PC=4+x,
∴6x=(3-)( 4+x),
整理得:x2+10x-24=0,
解得:x=2(负值已舍).
∴CE的长为2.
【点睛】本题考查了切线的性质,相似三角形的判定和性质,圆周角定理,解题的关键是学会利用参数构建方程解决问题.
37.(2022·黑龙江哈尔滨·统考中考真题)已知是的直径,点A,点B是上的两个点,连接,点D,点E分别是半径的中点,连接,且.
(1)如图1,求证:;
(2)如图2,延长交于点F,若,求证:;
(3)如图3,在(2)的条件下,点G是上一点,连接,若,,求的长.
【答案】(1)见解析
(2)见解析
(3)
【分析】(1)根据SAS证明即可得到结论;
(2)证明即可得出结论;
(3)先证明,连接,证明,设,,在上取点M,使得,连接,证明为等边三角形,得,根据可求出,得,,过点H作于点N,求出,再证,根据可得结论.
【详解】(1)如图1.∵点D,点E分别是半径的中点
∴,
∵,
∴
∵,
∴
∵
∴,
∴;
(2)如图2.∵,
∴
由(1)得,
∴
∴,
∴
∵
∴,
∴
(3)如图3.∵,
∴
∴
连接.∵
∴,
∴,
∵
设,
∴
在上取点M,使得,连接
∵,
∴
∴,
∴为等边三角形
∴
∵,
∴
∴,
∴
∴,
过点H作于点N
,
∴,
∴
∵,,
∴
∵,
∴,
∴
∴,
在中,,
∴
∴,
∴.
【点睛】本题主要考查了圆周角定理,等边三角形的判定和性质,全等三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形等知识,正确作出辅助线构造全等三角形是解答本题的关键.
38.(2022·黑龙江大庆·统考中考真题)如图,已知是外接圆的直径,.点D为外的一点,.点E为中点,弦过点E..连接.
(1)求证:是的切线;
(2)求证:;
(3)当时,求弦的长.
【答案】(1)答案见解析
(2)答案见解析
(3)
【分析】(1)根据BC是△ABC外接圆⊙O的直径,得∠BAC=90°,由因为∠ACD=∠B,得∠BCD=90°,即可得答案;
(2)先证△FEA∽△CEG,得,又因为AE=CE,EF=2EG,得CE2=2EG2,得OC2-OE2=EC2,即可得答案;
(3)作ON⊥FG,延长FG交线段于点W,得四边形ONWC为矩形,得NG=1.5EG,NE=0.5EG,EW=8-0.5EG,得(8-0.5EG)2+64-2EG2-EG2=2EG2,得EG=,即可得答案.
【详解】(1)解:∵BC是△ABC外接圆⊙O的直径,
∴∠BAC=90°,
∴∠B+∠ACB=90°,
∵∠ACD=∠B,
∴∠ACD+∠ACB=90°,
∴∠BCD=90°,
∵ OC 是 OO 的半径,
∴CD 是 OO 的切线;
(2)如下图,连接AF、CG,
∴∠AFE=∠ECG,
∵∠AEF=∠CEG,
∴△FEA∽△CEG,
∴,
∵点E为AC中点,
∴AE=CE,
∵EF=2EG,
∴,
∴CE2=2EG2,
∵∠BAC=90°,点E为AC中点,
∴EOAB,
∴∠OEC=90°,
∴OC2-OE2=EC2,
∴OC2-OE2=2EG2,
∴(OC+OE)(OC OE)=EG EF;
(3)作ON⊥FG,延长FG交线段于点W,
∵BC=16,
∴OC=8,
∵FGBC,
∴四边形ONWC为矩形,
∴NW=OC=8,CW=ON,
∵EF=2EG,
∴FG=3EG,
∴NG=1.5EG,NE=0.5EG,EW=8-EN=8-0.5EG,
由(2)可知:OC2-OE2=2EG2,
∴CE2=2EG2, EW2=(8-0.5EG)2,
∵∠ONE=∠OEC=90°,
∴OE2=OC2-CE2,ON2=OE2-EN2,
∴OE2=64-2EG2,ON2=64-2EG2-EG2,
∵∠CME=90°,
∴EW2+CW2=CE2,
∴(8-0.5EG)2+64-2EG2-EG2=2EG2,
解得EG=,
∴FG=3EG=.
【点睛】本题考查了圆周角定理,垂径定理,切线的判定定理,相似三角形的判定与性质,勾股定理,矩形的性质,解题的关键是作合适的辅助线.
39.(2022·黑龙江绥化·统考中考真题)如图所示,在的内接中,,,作于点P,交于另一点B,C是上的一个动点(不与A,M重合),射线交线段的延长线于点D,分别连接和,交于点E.
(1)求证:.
(2)若,,求的长.
(3)在点C运动过程中,当时,求的值.
【答案】(1)证明见解析
(2)
(3)
【分析】(1)利用圆周角定理得到∠CMA=∠ABC,再利用两角分别相等即可证明相似;
(2)连接OC,先证明MN是直径,再求出AP和NP的长,接着证明,利用相似三角形的性质求出OE和PE,再利用勾股定理求解即可;
(3)先过C点作CG⊥MN,垂足为G,连接CN,设出再利用三角函数和勾股定理分别表示出PB和PG,最后利用相似三角形的性质表示出EG,然后表示出ME和NE,算出比值即可.
【详解】(1)解:∵AB⊥MN,
∴∠APM=90°,
∴∠D+∠DMP=90°,
又∵∠DMP+∠NAC=180°,∠MAN=90°,
∴∠DMP+∠CAM=90°,
∴∠CAM=∠D,
∵∠CMA=∠ABC,
∴.
(2)连接OC,
∵,
∴MN是直径,
∵,
∴OM=ON=OC=5,
∵,且,
∴,
∵,
∴,
∴,
∴,
∴,
∵,
∴OC⊥MN,
∴∠COE=90°,
∵AB⊥MN,
∴∠BPE=90°,
∴∠BPE=∠COE,
又∵∠BEP=∠CEO,
∴
∴,
即
由,
∴,
∴,
,
∴.
(3)过C点作CG⊥MN,垂足为G,连接CN,则∠CGM=90°,
∴∠CMG+∠GCM=90°,
∵MN是直径,
∴∠MCN=90°,
∴∠CNM+∠DMP=90°,
∵∠D+∠DMP=90°,
∴∠D=∠CNM=∠GCM,
∵,
∴,
∵
∴设
∴
∴
∴
∴
∵,且,
∴,,
∵,
∴,
∴,
∴,
∵∠CGE=∠BPE=90°,∠CEG =∠BEP,
∴,
∴,
即
∴,
∴,,
∴,
∴的值为.
【点睛】本题考查了圆的相关知识、相似三角形的判定与性质、三角函数、勾股定理等知识,涉及到了动点问题,解题关键是构造相似三角形,正确表示出各线段并找出它们的关系,本题综合性较强,属于压轴题.
40.(2022·黑龙江齐齐哈尔·统考中考真题)如图,在△ABC中,AB=AC,以AB为直径作⊙O,AC与⊙O交于点D,BC与⊙O交于点E,过点C作,且CF=CD,连接BF.
(1)求证:BF是⊙O的切线;
(2)若∠BAC=45°,AD=4,求图中阴影部分的面积.
【答案】(1)见解析
(2)
【分析】(1)连接BD,得;利用AB=AC得到,由得到,故;利用SAS证明,得到,最后同旁内角互补,即可得
(2)连接OE,与BD相交于M点,根据∠BAC=45°,得是等腰直角三角形,由AD=4,得AB,OB,OE长度;和是共一底角的等腰三角形,故,,,是等腰直角三角形,即可算出阴影部分面积
【详解】(1)连接BD
∵AB是的直径
∴
∴
∵
∴
∵
∴,
∴
∵,
∴
∴
又∵
∴
∴BF是的切线
(2)连接OE,与BD相交于M点
∵,,
∴为等腰直角三角形
∴,,
∴
∴
∴
∵,
∴
∴
∴
∴为等腰直角三角形
∴
∴
【点睛】本题考查圆,全等三角形,等腰直角三角形,等腰三角形;熟练运用各种几何知识是本题关键
41.(2022·广西玉林·统考中考真题)如图,是的直径,C,D都是上的点,平分,过点D作的垂线交的延长线于点E,交的延长线于点F.
(1)求证:是的切线;
(2)若,,求的值.
【答案】(1)见解析
(2)
【分析】(1)连接OD,由题意可证,由,可得,即可证得EF是⊙O的切线;
(2) 连接BC,过点C作于点M,过点D作于点N,首先根据勾股定理可求得BC,根据面积可求得CM,再根据勾股定理可求得AM,再根据圆周角定理可证得,即可求得DN、ON的长,据此即可解答.
【详解】(1)证明:如图:连接OD,
,
,
又平分,
,
,
,
又,
,
是⊙O的半径,
EF是⊙O的切线;
(2)解:如图:连接BC,过点C作于点M,过点D作于点N,
,
是⊙O的直径,
,
,
,
,
∴,
,
,,
,
,
,
是⊙O的直径,AB=10,
,
,
,ON=3,
,
.
【点睛】本题考查了角平分线的定义,平行线的判定及性质,圆的切线的判定,圆周角定理,勾股定理,相似三角形的判定及性质,求角的正切值,作出辅助线是解决本题的关键.
42.(2022·湖北十堰·统考中考真题)如图,中,,为上一点,以为直径的与相切于点,交于点,,垂足为.
(1)求证:是的切线;
(2)若,,求的长.
【答案】(1)见解析
(2)
【分析】(1)连接,设,,根据已知条件以及直径所对的圆周角相等,证明,进而求得,即可证明是的切线;
(2)根据已知条件结合(1)的结论可得四边形是正方形,进而求得的长,根据,,即可求解.
【详解】(1)如图,连接,
,
则,
设,,
,
,
为的直径,
,
,
即,
,
,
,
,
,
,
,
为的半径,
是的切线;
(2)如图,连接,
是的切线,则,又,
四边形是矩形,
,
四边形是正方形,
,
在中,,,
,
,
由(1)可得,
,
,
,
解得 .
【点睛】本题考查了切线的性质与判定,正方形的性质与判定,等腰三角形的性质,正弦的定义,掌握切线的性质与判定是解题的关键.
43.(2022·湖北武汉·统考中考真题)如图,以为直径的经过的顶点,,分别平分和,的延长线交于点,连接.
(1)判断的形状,并证明你的结论;
(2)若,,求的长.
【答案】(1)为等腰直角三角形,详见解析
(2)
【分析】(1)由角平分线的定义、结合等量代换可得,即;然后再根据直径所对的圆周角为90°即可解答;
(2)如图:连接,,,交于点.先说明垂直平分.进而求得BD、OD、OB的长,设,则.然后根据勾股定理列出关于t的方程求解即可.
【详解】(1)解:为等腰直角三角形,证明如下:
证明:∵平分,平分,
∴,.
∵,,
∴.
∴.
∵为直径,
∴.
∴是等腰直角三角形.
(2)解:如图:连接,,,交于点.
∵,
∴.
∵,
∴垂直平分.
∵是等腰直角三角形,,
∴.
∵,
∴.
设,则.
在和中,.解得,.
∴.
∴.
【点睛】本题主要考查了角平分线的定义、等腰三角形的判定与性质、勾股定理的应用、垂直平分线的判定与性质、圆的性质等知识点,灵活运用相关知识成为解答本题的关键.
44.(2022·四川乐山·统考中考真题)如图,线段AC为⊙O的直径,点D、E在⊙O上,=,过点D作DF⊥AC,垂足为点F.连结CE交DF于点G.
(1)求证:CG=DG;
(2)已知⊙O的半径为6,,延长AC至点B,使.求证:BD是⊙O的切线.
【答案】(1)见解析
(2)见解析
【分析】(1)连接AD,得到∠ADF+∠FDC=90°,由DF⊥AC,得到∠ADF+∠DAF=90°,再由=,可推出∠DCE=∠FDC,即可证明CG=DG;
(2)要证明BD是⊙O的切线,只要证明OD⊥BD,只要证明BD∥CE,通过计算求得sin∠B=,即可证明结论.
【详解】(1)证明:连接AD,
∵AC为⊙O的直径,∴∠ADC=90°,则∠ADF+∠FDC=90°,
∵DF⊥AC,∴∠AFD=90°,则∠ADF+∠DAF=90°,
∴∠FDC=∠DAF,
∵=,∴∠DCE=∠DAC,
∴∠DCE=∠FDC,
∴CG=DG;
(2)证明:连接OD,设OD与CE相交于点H,
∵=,
∴OD⊥EC,
∵DF⊥AC,
∴∠ODF=∠OCH=∠ACE,
∵,
∴sin∠ODF=sin∠OCH=,即=,
∴OF=,
由勾股定理得DF=,
FC=OC-OF=,
∴FB= FC+BC=,
由勾股定理得DB==8,
∴sin∠B==,
∴∠B=∠ACE,
∴BD∥CE,
∵OD⊥EC,
∴OD⊥BD,
∵OD是半径,
∴BD是⊙O的切线.
【点睛】本题考查了切线的判定、解直角三角形、圆周角定理等知识点,熟练掌握圆的切线的判定及圆中的相关计算是解题的关键.
45.(2022·四川凉山·统考中考真题)如图,已知半径为5的⊙M经过x轴上一点C,与y轴交于A、B两点,连接AM、AC,AC平分∠OAM,AO+CO=6
(1)判断⊙M与x轴的位置关系,并说明理由;
(2)求AB的长;
(3)连接BM并延长交圆M于点D,连接CD,求直线CD的解析式.
【答案】(1)⊙M与x轴相切,理由见解析
(2)6
(3)
【分析】(1)连接CM,证CM⊥x即可得出结论;
(2)过点M作MN⊥AB于N,证四边形OCMN是矩形,得MN=OC,ON=OM=5,设AN=x,则OA=5-x,MN=OC=6-(5-x)=1+x,利用勾股定理求出x值,即可求得AN值,再由垂径定理得AB=2AN即可求解;
(3)连接BC,CM,过点D作DP⊥CM于P,得直角三角形BCD,由(2)知:AB=6,OA=2,OC=4,所以OB=8,C(4,0),在Rt△BOC中,∠BOC=90°,由勾股定理,求得BC=,在Rt△BCD中,∠BCD=90°,由勾股定理,即可求得CD,在Rt△CPD和在Rt△MPD中,由勾股定理,求得CP=2,PD=4,从而得出点D坐标,然后用待定系数法求出直线CD解析式即可.
【详解】(1)解:⊙M与x轴相切,理由如下:
连接CM,如图,
∵MC=MA,
∴∠MCA=∠MAC,
∵AC平分∠OAM,
∴∠MAC=∠OAC,
∴∠MCA=∠OAC,
∵∠OAC+∠ACO=90°,
∴∠MCO=∠MCA+∠ACO=∠OAC+∠ACO=90°,
∵MC是⊙M的半径,点C在x轴上,
∴⊙M与x轴相切;
(2)解:如图,过点M作MN⊥AB于N,
由(1)知,∠MCO=90°,
∵MN⊥AB于N,
∴∠MNO=90°,AB=2AN,
又∵∠CON=90°,
∴四边形OCMN是矩形,
∴MN=OC,ON=CM=5,
∵OA+OC=6,
设AN=x,
∴OA=5-x,MN=OC=6-(5-x)=1+x,
在Rt△MNA中,∠MNA=90°,由勾股定理,得
x2+(1+x)2=52,
解得:x1=3,x2=-4(不符合题意,舍去),
∴AN=3,
∴AB=2AN=6;
(3)解:如图,连接BC,CM,过点D作DP⊥CM于P,
由(2)知:AB=6,OA=2,OC=4,
∴OB=8,C(4,0)
在Rt△BOC中,∠BOC=90°,由勾股定理,得
BC=,
∵BD是⊙M的直径,
∴∠BCD=90°,BD=10,
在Rt△BCD中,∠BCD=90°,由勾股定理,得
CD=,即CD2=20,
在Rt△CPD中,由勾股定理,得PD2=CD2-CP2=20-CP2,
在Rt△MPD中,由勾股定理,得PD2=MD2-MP2=MD2-(MC-CP)2=52-(5-CP)2=10CP-CP2,
∴20-CP2=10CP-CP2,
∴CP=2,
∴PD2=20-CP2=20-4=16,
∴PD=4,即D点横坐标为OC+PD=4+4=8,
∴D(8,-2),
设直线CD解析式为y=kx+b,把C(4,0),D(8,-2)代入,得
,解得:,
∴直线CD的解析式为:.
【点睛】本题考查直线与圆相切的判定,勾股定理,圆周角定理的推论,垂径定理,待定系数法求一次函数解析式,熟练掌握直线与圆相切的判定、待定系数法求一次函数解析式的方法是解题的关键.
46.(2022·四川成都·统考中考真题)如图,在中,,以为直径作⊙,交边于点,在上取一点,使,连接,作射线交边于点.
(1)求证:;
(2)若,,求及的长.
【答案】(1)见解析
(2)BF=5,
【分析】(1)根据中,,得到∠A+∠B=∠ACF+∠BCF=90°,根据,得到∠B=∠BCF,推出∠A=∠ACF;
(2)根据∠B=∠BCF,∠A=∠ACF,得到AF=CF,BF=CF,推出AF=BF= AB,根据,AC=8,得到AB=10,得到BF=5,根据,得到,连接CD,根据BC是⊙O的直径,得到∠BDC=90°,推出∠B+∠BCD=90°,推出∠A=∠BCD,得到,推出,得到,根据∠FDE=∠BCE,∠B=∠BCE,得到∠FDE=∠B,推出DE∥BC,得到△FDE∽△FBC,推出,得到.
【详解】(1)解:∵中,,
∴∠A+∠B=∠ACF+∠BCF=90°,
∵,
∴∠B=∠BCF,
∴∠A=∠ACF;
(2)∵∠B=∠BCF,∠A=∠ACF
∴AF=CF,BF=CF,
∴AF=BF= AB,
∵,AC=8,
∴AB=10,
∴BF=5,
∵,
∴,
连接CD,∵BC是⊙O的直径,
∴∠BDC=90°,
∴∠B+∠BCD=90°,
∴∠A=∠BCD,
∴,
∴,
∴,
∵∠FDE=∠BCE,∠B=∠BCE,
∴∠FDE=∠B,
∴DE∥BC,
∴△FDE∽△FBC,
∴,
∴.
【点睛】本题主要考查了圆周角,解直角三角形,勾股定理,相似三角形,解决问题的关键是熟练掌握圆周角定理及推论,运用勾股定理和正弦余弦解直角三角形,相似三角形的判定和性质.
47.(2022·四川遂宁·统考中考真题)如图,是的外接圆,点O在BC上,的角平分线交于点D,连接BD,CD,过点D作BC的平行线与AC的延长线相交于点P.
(1)求证:PD是的切线;
(2)求证:∽;
(3)若,,求点O到AD的距离.
【答案】(1)见解析
(2)见解析
(3)点O到AD的距离为
【分析】(1)连接OD,证明,则,即可得证;
(2)由,,可得,根据四边形ABDC为圆内接四边形,又,可得,即可证明∽;
(3)过点O作于点E,由∽,根据相似三角形的性质可求得,证明∽,继而求得,在中,利用勾股定理即可求解.
【详解】(1)证明:连接OD,
∵AD平分,
∴,
∴.
又∵BC为直径,
∴O为BC中点,
∴.
∵,
∴.
又∵OD为半径,
∴PD是的切线;
(2)证明:∵,
∴.
∵,
∴.
∵四边形ABDC为圆内接四边形,
∴.
又∵,
∴,
∴∽.
(3)过点O作于点E,
∵BC为直径,
∴.
∵,,
∴.
又∵,
∴,
∴.
由(2)知∽,
∴,
∴,
∴.
又∵,,
∴∽,
∴,
∴,
∴.
∵,
∴.
在中,,
∴点O到AD的距离为.
【点睛】本题考查了切线的性质与判定,圆内接四边形对角互补,相似三角形的性质与判定,勾股定理,掌握以上知识是解题的关键.
48.(2022·四川德阳·统考中考真题)如图,是的直径,是的弦,,垂足是点,过点作直线分别与,的延长线交于点,,且.
(1)求证:是的切线;
(2)如果,,
①求的长;
②求的面积.
【答案】(1)证明过程见详解
(2)①;②
【分析】(1)连接OC、BC,根据垂径定理得到AB平分弦CD,AB平分,即有∠BAD=∠BAC=∠DCB,再根据∠ECD=2∠BAD,证得∠BCE=∠BCD,即有∠BCE=∠BAC,则有∠ECB=∠OCA,即可得∠ECB+∠OCB=90°,即有CO⊥FC,则问题得证;
(2)①利用勾股定理求出OH、BC、AC,在Rt△ECH中,,在Rt△ECO中,,即可得到,则问题得解;
②过F点作FP⊥AB,交AE的延长线于点P,先证△PAF∽△HAC,再证明△PEF∽△HEC,即可求出PF,则△PEF的面积可求.
【详解】(1)连接OC、BC,如图,
∵AB是⊙O的直径,
∴∠ACB=90°,AO=OB,
∵AB⊥CD,
∴AB平分弦CD,AB平分,
∴CH=HD,,∠CHA=90°=∠CHE,
∴∠BAD=∠BAC=∠DCB,
∵∠ECD=2∠BAD,
∴∠ECD=2∠BAD=2∠BCD,
∵∠ECD=∠ECB+∠BCD,
∴∠BCE=∠BCD,
∴∠BCE=∠BAC,
∵OC=OA,
∴∠BAC=∠OCA,
∴∠ECB=∠OCA,
∵∠ACB=90°=∠OCA+∠OCB,
∴∠ECB+∠OCB=90°,
∴CO⊥FC,
∴CF是⊙O的切线;
(2)①∵AB=10,CD=6,
∴在(1)的结论中有AO=OB=5,CH=HD=3,
∴在Rt△OCH中,,
同理利用勾股定理,可求得,,
∴BH=OB-OH=5-4=1,HA=OA+OH=4+5=9,即HE=BH+BE,
在Rt△ECH中,,
∵CF是⊙O的切线,
∴∠OCB=90°,
∴在Rt△ECO中,,
∴,
解得:,
∴,
②过F点作FP⊥AB,交AE的延长线于点P,如图,
∵∠BAD=∠CAB,∠CHA=90°=∠P,
∴△PAF∽△HAC,
∴,即,
∴,
∵∠PEF=∠CEH,∠CHB=90°=∠P,
∴△PEF∽△HEC,
∴,即,
∵HB=1,,,,
∴,
解得:,
∴,
故△AEF的面积为.
【点睛】本题主要考查了垂径定理、切线的判定与性质、相似三角形的判定与性质、勾股定理等知识,掌握垂径定理是解答本题的关键.利用相似三角形的性质是解题的难点.
49.(2021·山东德州·中考真题)已知为的外接圆,.
(1)如图1,延长至点,使,连接.
①求证:为直角三角形;
②若的半径为4,,求的值;
(2)如图2,若,为上的一点,且点,位于两侧,作关于对称的图形,连接,试猜想,,三者之间的数量关系并给予证明.
【答案】(1)①见解析;②;
(2),理由见解析
【分析】(1)①利用如果三角形中一条边上的中线等于这边的一半,那么这个三角形是直角三角形可得出结论;
②连接OA,OD,利用垂径定理得到OD⊥AC且AH=CH,设DH=x,则OH=4-x,利用勾股定理列出方程求得DH的值,再利用三角形的中位线定理得到BC=2DH;
(2)猜想QA,QC,QD三者之间的数量关系为:QC2=2QD2+QA2.延长QA交⊙O于点F,连接DF,FC,由已知可得∠DAC=∠DCA=45°;利用同弧所对的圆周角相等,得到∠DFA=∠E=∠DCA=45°,∠DFC=∠DAC=45°,由于△ADQ△与ADE关于AD对称,于是∠DQA=∠E=45°,则得△DQF为等腰直角三角形,△QFC为直角三角形;利用勾股定理可得:QC2=QF2+CF2,QF2=2DQ2;利用△QDA≌△FDC得到QA=FC,等量代换可得结论.
【详解】(1)①,,
.
∴∠B=∠DCB,
∴∠BAC=∠DCA,
∵∠B+∠BAC+∠DCB+∠DCA =180°,
∴∠DCB+∠DCA=90°.
为直角三角形;
②连接,,如图,
,
,
且.
的半径为4,
.
设,则,
,
,
.
解得:.
.
由①知:,
,
.
,
.
(2),,三者之间的数量关系为:.理由:
延长交于点,连接,,如图,
,,
.
,.
.
.
与关于对称,
,
,
.
.
.
即.
,
.
在和中,
,
.
.
.
【点睛】本题是一道圆的综合题,主要考查了圆的有关性质,垂径定理,勾股定理,圆周角定理及其推论,等腰直角三角形的判定与性质,三角形全等的判定与性质,直角三角形的判定与性质,轴对称的性质,方程的解法.根据图形的特点恰当的添加辅助线是解题的关键.
50.(2021·辽宁鞍山·统考中考真题)如图,AB为的直径,C为上一点,D为AB上一点,,过点A作交CD的延长线于点E,CE交于点G,连接AC,AG,在EA的延长线上取点F,使.
(1)求证:CF是的切线;
(2)若,,求的半径.
【答案】(1)见解析;(2)5
【分析】(1)根据题意判定,然后结合相似三角形的性质求得,从而可得,然后结合等腰三角形的性质求得,从而判定CF是的切线;
(2)由切线长定理可得,从而可得,得到,然后利用勾股定理解直角三角形可求得圆的半径.
【详解】(1)证明:,,
,
,
,
,
,
又,
,
,
,
,,
,
,
AB是的直径,
,
又,
,
,
,
即CF是的切线;
(2)CF是的切线,,
,
,
,
又,
在中,,
设的半径为x,则,,
在中,,
解得:,
的半径为5.
【点睛】本题考查了圆周角定理、切线的判定与性质、相似三角形的判定与性质、勾股定理等,熟练掌握相关定理与性质是解决本题的关键.
精品试卷·第 2 页 (共 2 页)
()
圆(压轴题)--中考数学历年中考真题考点分类专项训练
一、单选题
1.(2018·湖北武汉·统考中考真题)如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是( )
A. B. C. D.
2.(2018·四川宜宾·统考中考真题)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为( )
A. B. C.34 D.10
3.(2017·贵州黔东南·中考真题)如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为( )
A.60° B.67.5° C.75° D.54°
4.(2016·山东泰安·中考真题)如图,△ABC内接于⊙O,AB是⊙O的直径,∠B=30°,CE平分∠ACB交⊙O于E,交AB于点D,连接AE,则S△ADE:S△CDB的值等于( )
A.1: B.1: C.1:2 D.2:3
5.(2015·浙江金华·中考真题)如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是( )
A. B. C. D.2
6.(2015·广西河池·统考中考真题)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是( )
A.6 B.8 C.10 D.12
7.(2019·四川宜宾·统考中考真题)如图,的顶点O是边长为2的等边的重心,的两边与的边交于E,F,,则与的边所围成阴影部分的面积是( )
A. B. C. D.
8.(2018·内蒙古赤峰·中考真题)如图,直线与x轴、y轴分别交于A、B两点,点P是以C(﹣1,0)为圆心,1为半径的圆上一点,连接PA,PB,则△PAB面积的最小值是( )
A.5 B.10 C.15 D.20
9.(2021·四川泸州·统考中考真题)如图,⊙O的直径AB=8,AM,BN是它的两条切线,DE与⊙O相切于点E,并与AM,BN分别相交于D,C两点,BD,OC相交于点F,若CD=10,则BF的长是
A. B. C. D.
10.(2021·四川眉山·统考中考真题)如图,在以为直径的中,点为圆上的一点,,弦于点,弦交于点,交于点.若点是的中点,则的度数为( )
A.18° B.21° C.22.5° D.30°
11.(2021·四川泸州·统考中考真题)在锐角ABC中,∠A,∠B,∠C所对的边分别为a,b,c,有以下结论:(其中R为ABC的外接圆半径)成立.在ABC中,若∠A=75°,∠B=45°,c=4,则ABC的外接圆面积为( )
A. B. C. D.
12.(2020·四川·统考中考真题)已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为( )
A.2 B.2﹣2 C.2+2 D.2
13.(2020·山东临沂·中考真题)如图,在中,为直径,,点D为弦的中点,点E为上任意一点,则的大小可能是( )
A. B. C. D.
14.(2020·浙江温州·统考中考真题)如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为( )
A.1 B.2 C. D.
15.(2019·广西玉林·统考中考真题)如图,在中,,,,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是( )
A.5 B.6 C.7 D.8
16.(2022·江苏镇江·统考中考真题)如图,在等腰中,,BC= ,同时与边的延长线、射线相切,的半径为3.将绕点按顺时针方向旋转,、的对应点分别为、,在旋转的过程中边所在直线与相切的次数为( )
A.1 B.2 C.3 D.4
17.(2022·安徽·统考中考真题)已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△PAB,△PBC,△PCA的面积分别记为,,,.若,则线段OP长的最小值是( )
A. B. C. D.
18.(2021·广西梧州·统考中考真题)在平面直角坐标系中,已知点A(0,1),B(0,﹣5),若在x轴正半轴上有一点C,使∠ACB=30°,则点C的横坐标是( )
A.34 B.12 C.6+3 D.6
19.(2021·湖南娄底·统考中考真题)如图,直角坐标系中,以5为半径的动圆的圆心A沿x轴移动,当⊙与直线只有一个公共点时,点A的坐标为( )
A. B. C. D.
20.(2021·湖北鄂州·统考中考真题)如图,中,,,.点为内一点,且满足.当的长度最小时,的面积是( )
A.3 B. C. D.
二、填空题
21.(2018·广东韶关·中考真题)如图,矩形中,,,以为直径的半圆与相切于点,连接,则阴影部分的面积为__.(结果保留
22.(2016·四川泸州·统考中考真题)如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______.
23.(2018·湖北咸宁·统考中考真题)如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA=OB=a,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A关于直线OM′的对称点C,画直线BC交OM′于点D,连接AC,AD,有下列结论:
①AD=CD;
②∠ACD的大小随着α的变化而变化;
③当α=30°时,四边形OADC为菱形;
④△ACD面积的最大值为a2;
其中正确的是_____.(把你认为正确结论的序号都填上).
24.(2018·黑龙江伊春·中考真题)如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为_____.
25.(2018·浙江嘉兴·统考中考真题)如图,在矩形中,,,点在上,,点在边上一动点,以为斜边作.若点在矩形的边上,且这样的直角三角形恰好有两个,则的值是__________.
26.(2017·甘肃兰州·中考真题)如图,在平面直角坐标系中,平行四边形的顶点A,B的坐标分别是,,动点P在直线上运动,以点P为圆心,长为半径的随点P运动,当与四边形的边相切时,P点的坐标为__.
27.(2019·湖南岳阳·统考中考真题)如图,AB为⊙O的直径,点P为AB延长线上的一点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE的垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是___________.(写出所有正确结论的序号)
①AM平分∠CAB;
②AM2=AC AB;
③若AB=4,∠APE=30°,则的长为;
④若AC=3,BD=1,则有CM=DM=.
28.(2019·湖北荆门·统考中考真题)如图,等边三角形的边长为2,以为圆心,1为半径作圆分别交,边于,,再以点为圆心,长为半径作圆交边于,连接,,那么图中阴影部分的面积为________.
29.(2019·河南·统考中考真题)如图,在扇形AOB中,,半径OC交弦AB于点D,且.若,则阴影部分的面积为_____.
30.(2019·重庆·统考中考真题)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为______.(结果保留)
三、解答题
31.(2022·湖北荆门·统考中考真题)如图,AB为⊙O的直径,点C在直径AB上(点C与A,B两点不重合),OC=3,点D在⊙O上且满足AC=AD,连接DC并延长到E点,使BE=BD.
(1)求证:BE是⊙O的切线;
(2)若BE=6,试求cos∠CDA的值.
32.(2022·四川绵阳·统考中考真题)如图,AB为⊙O的直径,C为圆上的一点,D为劣弧的中点,过点D作⊙O的切线与AC的延长线交于点P,与AB的延长线交于点F,AD与BC交于点E.
(1)求证:;
(2)若⊙O的半径为,DE=1,求AE的长度;
(3)在(2)的条件下,求的面积.
33.(2022·广西柳州·统考中考真题)如图,已知AB是⊙O的直径,点E是⊙O上异于A,B的点,点F是的中点,连接AE,AF,BF,过点F作FC⊥AE交AE的延长线于点C,交AB的延长线于点D,∠ADC的平分线DG交AF于点G,交FB于点H.
(1)求证:CD是⊙O的切线;
(2)求sin∠FHG的值;
(3)若GH=,HB=2,求⊙O的直径.
34.(2022·广西贵港·中考真题)如图,在中,,点D是边的中点,点O在边上,⊙经过点C且与边相切于点E,.
(1)求证:是⊙的切线;
(2)若,,求⊙的半径及的长.
35.(2022·四川广安·统考中考真题)如图,AB为⊙O的直径,D、E是⊙O上的两点,延长AB至点C,连接CD,∠BDC=∠BAD.
(1)求证:CD是⊙O的切线.
(2)若tan∠BED=,AC=9,求⊙O的半径.
36.(2022·湖北恩施·统考中考真题)如图,P为⊙O外一点,PA、PB为⊙O的切线,切点分别为A、B,直线PO交⊙O于点D、E,交AB于点C.
(1)求证:∠ADE=∠PAE.
(2)若∠ADE=30°,求证:AE=PE.
(3)若PE=4,CD=6,求CE的长.
37.(2022·黑龙江哈尔滨·统考中考真题)已知是的直径,点A,点B是上的两个点,连接,点D,点E分别是半径的中点,连接,且.
(1)如图1,求证:;
(2)如图2,延长交于点F,若,求证:;
(3)如图3,在(2)的条件下,点G是上一点,连接,若,,求的长.
38.(2022·黑龙江大庆·统考中考真题)如图,已知是外接圆的直径,.点D为外的一点,.点E为中点,弦过点E..连接.
(1)求证:是的切线;
(2)求证:;
(3)当时,求弦的长.
39.(2022·黑龙江绥化·统考中考真题)如图所示,在的内接中,,,作于点P,交于另一点B,C是上的一个动点(不与A,M重合),射线交线段的延长线于点D,分别连接和,交于点E.
(1)求证:.
(2)若,,求的长.
(3)在点C运动过程中,当时,求的值.
40.(2022·黑龙江齐齐哈尔·统考中考真题)如图,在△ABC中,AB=AC,以AB为直径作⊙O,AC与⊙O交于点D,BC与⊙O交于点E,过点C作,且CF=CD,连接BF.
(1)求证:BF是⊙O的切线;
(2)若∠BAC=45°,AD=4,求图中阴影部分的面积.
41.(2022·广西玉林·统考中考真题)如图,是的直径,C,D都是上的点,平分,过点D作的垂线交的延长线于点E,交的延长线于点F.
(1)求证:是的切线;
(2)若,,求的值.
42.(2022·湖北十堰·统考中考真题)如图,中,,为上一点,以为直径的与相切于点,交于点,,垂足为.
(1)求证:是的切线;
(2)若,,求的长.
43.(2022·湖北武汉·统考中考真题)如图,以为直径的经过的顶点,,分别平分和,的延长线交于点,连接.
(1)判断的形状,并证明你的结论;
(2)若,,求的长.
44.(2022·四川乐山·统考中考真题)如图,线段AC为⊙O的直径,点D、E在⊙O上,=,过点D作DF⊥AC,垂足为点F.连结CE交DF于点G.
(1)求证:CG=DG;
(2)已知⊙O的半径为6,,延长AC至点B,使.求证:BD是⊙O的切线.
45.(2022·四川凉山·统考中考真题)如图,已知半径为5的⊙M经过x轴上一点C,与y轴交于A、B两点,连接AM、AC,AC平分∠OAM,AO+CO=6
(1)判断⊙M与x轴的位置关系,并说明理由;
(2)求AB的长;
(3)连接BM并延长交圆M于点D,连接CD,求直线CD的解析式.
46.(2022·四川成都·统考中考真题)如图,在中,,以为直径作⊙,交边于点,在上取一点,使,连接,作射线交边于点.
(1)求证:;
(2)若,,求及的长.
47.(2022·四川遂宁·统考中考真题)如图,是的外接圆,点O在BC上,的角平分线交于点D,连接BD,CD,过点D作BC的平行线与AC的延长线相交于点P.
(1)求证:PD是的切线;
(2)求证:∽;
(3)若,,求点O到AD的距离.
48.(2022·四川德阳·统考中考真题)如图,是的直径,是的弦,,垂足是点,过点作直线分别与,的延长线交于点,,且.
(1)求证:是的切线;
(2)如果,,
①求的长;
②求的面积.
49.(2021·山东德州·中考真题)已知为的外接圆,.
(1)如图1,延长至点,使,连接.
①求证:为直角三角形;
②若的半径为4,,求的值;
(2)如图2,若,为上的一点,且点,位于两侧,作关于对称的图形,连接,试猜想,,三者之间的数量关系并给予证明.
50.(2021·辽宁鞍山·统考中考真题)如图,AB为的直径,C为上一点,D为AB上一点,,过点A作交CD的延长线于点E,CE交于点G,连接AC,AG,在EA的延长线上取点F,使.
(1)求证:CF是的切线;
(2)若,,求的半径.
精品试卷·第 2 页 (共 2 页)
()
转载请注明出处卷子答案网-一个不只有答案的网站 » 圆(压轴题)--中考数学历年中考真题考点分类专项训练(原卷+解析卷)