2023年中考数学“关键一战”冲刺练习(4)
不等式及不等式(组)
1、不等式的概念、性质及解集表示
1)不等式:一般地,用符号“<”(或“≤”)、“>”(或“≥”)连接的式子叫做不等式.能使不等式成立的未知数的值,叫做不等式的解.
2)不等式的基本性质
理论依据 式子表示
性质1 不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变 若,则
性质2 不等式两边同时乘以(或除以)同一个正数,不等号的方向不变 若,,则或
性质3 不等式两边同时乘以(或除以)同一个负数,不等号的方向改变 若,,则或
注意:不等式的性质是解不等式的重要依据,在解不等式时,应注意:在不等式的两边同时乘以(或除以)一个负数时,不等号的方向一定要改变.
3)不等式的解集及表示方法
(1)不等式的解集:一般地,一个含有未知数的不等式有无数个解,其解是一个范围,这个范围就是不等式的解集.(2)不等式的解集的表示方法:①用不等式表示;②用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式有无限个解.
2、一元一次不等式及其解法
1)一元一次不等式:不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫一元一次不等式.
2)解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(注意不等号方向是否改变).
3、一元一次不等式组及其解法
1)一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,组成一元一次不等式组.
2)一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集,求不等式组解集的过程,叫做解不等式组.
3)一元一次不等式组的解法:先分别求出每个不等式的解集,再利用数轴求出这些一元一次不等式的的解集的公共部分即可,如果没有公共部分,则该不等式组无解.
4)几种常见的不等式组的解集:设,,是常数,关于的不等式组的解集的四种情况如下表所示(等号取不到时在数轴上用空心圆点表示):
不等式组(其中) 数轴表示 解集 口诀
同大取大
同小取小
大小、小大中间找
无解 大大、小小取不了
考情总结:一元一次不等式(组)的解法及其解集表示的考查形式如下:
(1)一元一次不等式(组)的解法及其解集在数轴上的表示;(2)利用一次函数图象解一元一次不等式;
(3)求一元一次不等式组的最小整数解;(4)求一元一次不等式组的所有整数解的和.
4、列不等式(组)解决实际问题
列不等式(组)解应用题的基本步骤如下:①审题;②设未知数;③列不等式(组);④解不等式(组);⑤检验并写出答案.
考情总结:列不等式(组)解决实际问题常与一元一次方程、一次函数等综合考查,涉及的题型常与方案设计型问题相联系,如最大利润、最优方案等.列不等式时,要抓住关键词,如不大于、不超过、至多用“≤”连接,不少于、不低于、至少用“≥”连接.
1.(2022 宿迁)如果x<y,那么下列不等式正确的是( )
A.x﹣1>y﹣1 B.x+1>y+1 C.﹣2x<﹣2y D.2x<2y
【分析】根据不等式的性质进行分析判断.
【解答】解:A、在不等式x<y的两边同时减去1,不等号的方向不变,即x﹣1<y﹣1,不符合题意;
B、在不等式x<y的两边同时加上1,不等号的方向不变,即x+1<y+1,不符合题意;
C、在不等式x<y的两边同时乘﹣2,不等号法方向改变,即﹣2x>﹣2y,不符合题意;
D、在不等式x<y的两边同时乘2,不等号的方向不变,即2x<2y,符合题意.
故选:D.
2.(2022 益阳)若x=2是下列四个选项中的某个不等式组的一个解,则这个不等式组是( )
A. B. C. D.
【分析】先把不等式组的解集求出来,然后根据解集判断x=2是否是解集一个解.
【解答】解:A、∵不等式组的解集为x<﹣1,∴x=2不在这个范围内,故A不符合题意;
B、∵不等式组的解集为﹣1<x<1,∴x=2不在这个范围内,故B不符合题意;
C、∵不等式组无解,∴x=2不在这个范围内,故C不符合题意;
D、∵不等式组的解集为x>1,∴x=2在这个范围内,故D符合题意.
故选:D.
3.(2022 阜新)不等式组的解集,在数轴上表示正确的是( )
A. B.
C. D.
【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.
【解答】解:由﹣x﹣1≤2,得:x≥﹣3,
由0.5x﹣1<0.5,得:x<3,
则不等式组的解集为﹣3≤x<3,
故选:A.
4.(2022 济宁)若关于x的不等式组仅有3个整数解,则a的取值范围是( )
A.﹣4≤a<﹣2 B.﹣3<a≤﹣2 C.﹣3≤a≤﹣2 D.﹣3≤a<﹣2
【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.
【解答】解:解不等式x﹣a>0得:x>a,
解不等式7﹣2x>5得:x<1,
∵关于x的不等式组仅有3个整数解,
∴﹣3≤a<﹣2,
故选:D.
5.(2022 绥化)不等式组的解集为x>2,则m的取值范围为 .
【分析】分别求出每一个不等式的解集,根据口诀:同大取大,结合不等式组的解集可得答案.
【解答】解:由3x﹣6>0,得:x>2,
∵不等式组的解集为x>2,
∴m≤2,
故答案为:m≤2.
6.(2022 青海)不等式组的所有整数解的和为 .
【分析】先解不等式组,求出x的范围,再求出满足条件的整数,相加即可得答案.
【解答】解:,
由①得:x≥﹣2,
由②得x<3,
∴﹣2≤x<3,
x可取的整数有:﹣2,﹣1,0,1,2;
∴所有整数解的和为﹣2﹣1+0+1+2=0,
故答案为:0.
7.(2022 泰州)已知a=2m2﹣mn,b=mn﹣2n2,c=m2﹣n2(m≠n),用“<”表示a、b、c的大小关系为 .
【分析】代数式的比较,常用的方法是作差法或者作商法,由于填空题不需要过程的特殊性,还可以考虑特殊值代入法.考虑到答案唯一,因此特殊值代入法最合适,也最简单.
【解答】解:解法1:令m=1,n=0,
则a=2,b=0,c=1.
∵0<1<2.
∴b<c<a.
解法2:∵a﹣c=(2m2﹣mn)﹣(m2﹣n2)=(m﹣0.5n)2+0.75n2>0;
∴c<a;
∵c﹣b=(m2﹣n2)﹣(mn﹣2n2)=(m﹣0.5n)2+.075n2>0;
∴b<c;
∴b<c<a.
8.(2022 山西)某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价 元.
【分析】设该护眼灯可降价x元,根据“以利润率不低于20%的价格降价出售”列一元一次不等式,求解即可.
【解答】解:设该护眼灯可降价x元,
根据题意,得,
解得x≤32,
故答案为:32.
9.(2022 攀枝花)如果一元一次方程的解是一元一次不等式组的解.则称该一元一次方程为该一元一次不等式组的关联方程.若方程x﹣1=0是关于x的不等式组的关联方程,则n的取值范围是 .
【分析】先解方程x﹣1=0得x=3,再利用新定义得到,然后解n的不等式组即可.
【解答】解:解方程x﹣1=0得x=3,
∵x=3为不等式组的解,
∴,
解得1≤n<3,
即n的取值范围为:1≤n<3,
故答案为:1≤n<3.
10.(2022 丽水)不等式3x>2x+4的解集是 .
【分析】先移项,再合并同类项即可.
【解答】解:3x>2x+4,
3x﹣2x>4,
x>4,
故答案为:x>4.
11.(2022 陕西)求不等式﹣1<的正整数解.
【分析】解不等式求出x的范围,再取符合条件的正整数即可.
【解答】解:两边同时乘以4得:2x﹣4<x+1,
移项得:2x﹣x<1+4,
合并同类项得:x<5,
∴不等式的正整数解有:4,3,2,1.
12.(2022 菏泽)解不等式组,并将其解集在数轴上表示出来.
【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.
【解答】解:由①得:x≤1,
由②得:x<6,
∴不等式组的解集为x≤1,
解集表示在数轴上,如图所示:
.
13.(2022 淮安)解不等式组:并写出它的正整数解.
【分析】解不等式组求出它的解集,再取正整数解即可.
【解答】解:解不等式2(x﹣1)≥﹣4得x≥﹣1.
解不等式<x﹣1得x<4,
∴不等式组的解集为:﹣1≤x<4.
∴不等式组的正整数解为:1,2,3.
14.(2022 荆门)已知关于x的不等式组(a>﹣1).
(1)当a=时,解此不等式组;
(2)若不等式组的解集中恰含三个奇数,求a的取值范围.
【分析】(1)把a的值代入再求解;
(2)先解不等式组,再根据题意列不等式求解.
【解答】解:(1)当a=时,不等式组化为:,
解得:﹣2<x<4;
(2)解不等式组得:﹣2a﹣1<x<2a+3,
解法一:令y1=﹣2a﹣1,y2=2a+3,(a>﹣1)
如图所示:
当a=0时.x只有一个奇数解1,不合题意;
当a=1,x有奇数解1,﹣1,3,符合题意;
∵不等式组的解集中恰含三个奇数,
∴0<a≤1.
解法二:∵=1,且不等式组的解集中恰含三个奇数,
∴不等式组的解集的三个奇数必为:﹣1,1,3,
∴﹣3≤﹣2a﹣1<﹣1,且3<2a+3≤5,
解得:0<a≤1.
15.(2022 阜新)某公司引入一条新生产线生产A,B两种产品,其中A产品每件成本为100元,销售价格为120元,B产品每件成本为75元,销售价格为100元,A,B两种产品均能在生产当月全部售出.
(1)第一个月该公司生产的A,B两种产品的总成本为8250元,销售总利润为2350元,求这个月生产A,B两种产品各多少件?
(2)下个月该公司计划生产A,B两种产品共180件,且使总利润不低于4300元,则B产品至少要生产多少件?
【分析】(1)设生产A产品x件,B产品y件,根据题意列出方程组,求出即可;
(2)设B产品生产m件,则A产品生产(180﹣m)件,根据题意列出不等式组,求出即可.
【解答】解:(1)设生产A产品x件,B产品y件,
根据题意,得
解这个方程组,得,
所以,生产A产品30件,B产品70件.
(2)设B产品生产m件,则A产品生产(180﹣m)件,
根据题意,得(100﹣75)m+(120﹣100)(180﹣m)≥4300,
解这个不等式,得m≥140.
所以,B产品至少生产140件.
1.(2023 临安区一模)若x>y,a>1,则下列不等式正确的是( )
A.x+a<y+1 B.x+1>y+a C.ax<ay D.x+a>y+1
2.(2023 天山区一模)不等式组的解集在数轴上表示为( )
A. B.
C. D.
3.(2023 英德市一模)小红每分钟踢毽子的次数正常范围为少于80次,但不低于50次,用不等式表示为(( )
A.50<x<80 B.50≤x≤80 C.50≤x<80 D.50<x≤80
4.(2023 南海区一模)在﹣2,﹣1,0,1,2这五个数中,是不等式2x+3>0解的共有( )
A.1个 B.2个 C.3个 D.4个
5.(2023 泰山区一模)不等式组有4个整数解,则m的取值范围是( )
A.6≤m≤7 B.6<m<7 C.6≤m<7 D.6<m≤7
6.(2023 镇海区校级模拟)若关于x的不等式组 有解且至多有4个整数解,且多项式 x2﹣(1﹣m)能在有理数范围内因式分解,则符合条件的整数m的个数为( )
A.1 B.2 C.3 D.4
7.(2023 新郑市模拟)不等式组的解集是 .
8.(2023 大庆一模)若关于x的不等式3x﹣2m<x﹣m只有3个正整数解,则m的取值范围是 .
9.(2023 龙岗区二模)定义新运算“ ”,规定:a b=a﹣2b,若关于x的不等式组的解集为x>6,则a的取值范围是 .
10.(2023 东莞市校级模拟)某学校医务室采购了一批水银温度计和额温枪,其中有10支水银温度计,若干支额温枪.已知水银温度计每支5元,额温枪每支230元,如果总费用不超过1000元,那么额温枪至多有 支.
11.(2023 兴隆台区一模)若点P的坐标为(,2x﹣10),其中x满足不等式组,则点P的坐标为: .
12.(2023 碑林区校级模拟)解不等式:.
13.(2023 青海一模)解不等式组
请按下列步骤完成解答.
(1)解不等式①,得 ;
(2)解不等式②,得 ;
(3)把不等式①和②的解集在数轴上表示出来;
(4)原不等式组的解集是 .
14.(2023 邗江区一模)解不等式组:,并求出不等式组所有非正整数解的和.
15.(2023 花都区一模)“桃之夭夭,灼灼其华”,每年2﹣3月份,我区某湿地公园内的桃花陆续绽放,引来众多市民前往踏青观赏,纷纷拍照留念,记录生活美好时光.小王抓住这一商机,计划从市场购进A、B两种型号的手机自拍杆进行销售.据调查,购进1件A型号和1件B型号自拍杆共需45元,其中1件B型号自拍杆价格是1件A型号自拍杆价格的2倍.
(1)求1件A型号和1件B型号自拍杆的进价各是多少元?
(2)若小王计划购进A、B两种型号自拍杆共100件,并将这两款手机自拍杆分别以20元50元的价钱进行售卖.为了保证全部售卖完后的总利润不低于1100元,求最多购进A型号自拍杆多少件?
一.选择题
1.若x>y,a>1,则下列不等式正确的是( )
A.x+a<y+1 B.x+1>y+a C.ax<ay D.x+a>y+1
2.把不等式x+1≤2x﹣1的解集在数轴上表示,正确的是( )
A. B.
C. D.
3.不等式组的整数解的个数是( )
A.1 B.2 C.3 D.4
4.若关于x的不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是( )
A.m≥9 B.9<m<12 C.m<12 D.9≤m<12
5.某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克10元,售价每千克16元;乙种蔬菜进价每千克14元,售价每千克18元,该超市决定每天购进甲、乙两种蔬菜共100千克,准备投入资金不少于1180元,要求利润也不少于500元,设购买甲种蔬菜x千克(x为整数),则有( )不同的购买方案.
A.3种 B.4种 C.5种 D.6种
6.若不等式组的解集是x>1,则m的取值范围是( )
A.m≥1 B.m≤1 C.m≥0 D.m≤0
二.填空题
7.根据数量关系:x的5倍加上1是负数,可列出不等式: .
8.不等式组的最大整数解为 .
9.不等式组的所有整数解的和为 .
10.小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有 种.
11.对于一个数x,我们用(x]表示小于x的最大整数,例如:(2.6]=2,(﹣3]=﹣4,(10]=9.如果|(x]|=3,则x的取值范围为 .
12.若关于x的一元一次不等式组的解集为x<2,则a的取值范围是 .
三.解答题
13.解不等式>x﹣1,并写出它的所有正整数解.
14.解不等式组,并将解集在数轴上表示出来.
15.为响应乡村振兴号召,在外地创业成功的大学毕业生小姣毅然返乡当起了新农人,创办了果蔬生态种植基地.最近,为给基地蔬菜施肥,她准备购买甲、乙两种有机肥.已知甲种有机肥每吨的价格比乙种有机肥每吨的价格多100元,购买2吨甲种有机肥和1吨乙种有机肥共需1700元.
(1)甲、乙两种有机肥每吨各多少元?
(2)若小姣准备购买甲、乙两种有机肥共10吨,且总费用不能超过5600元,则小姣最多能购买甲种有机肥多少吨?
16.为实现区域教育均衡发展,某市计划对A、B两类薄弱学校全部进行改造.根据预算,共需资金2000万元.改造一所A类学校和两所B类学校共需资金210万元;改造两所A类学校和一所B类学校共需资金180万元.
(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?
(2)若该市的A类学校不超过8所,则B类学校至少有多少所?
(3)市教育局计划今年对该市A、B两类学校共10所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过490万元;地方财政投入的改造资金不少于200万元,其中地方财政投入到A、B两类学校的改造资金分别为每所15万元和25万元.请你通过计算求出有几种改造方案?
名校预测
1.【分析】根据不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,依次进行判断即可.
【解答】解:∵x>y,a>1,
∴x+a>y+1,
故A不符合题意,D符合题意;
(x+1)与(y+a)的大小不能确定,
故B不符合题意;
ax>ay,
故C不符合题意,
故选:D.
2.【分析】先解出不等式组的解集,然后将解集表示在数轴上即可.
【解答】解:,
解得,
所以解集为1<x≤2,
在数轴上表示为:.
故选:D.
3.【分析】直接根据题意可得不等式即可.
【解答】解:小红每分钟踢毽子的次数正常范围为少于80次,但不少于50次,用不等式表示为50≤x<80.
故选:C.
4.【分析】解不等式2x+3>0,得x>﹣1.5,即可判断出答案.
【解答】解:解不等式2x+3>0,得x>﹣1.5,
∴在﹣2,﹣1,0,1,2这五个数中,是不等式2x+3>0解的有﹣1,0,1,2,共4个.
故选:D.
5.【分析】根据关于x的不等式组的解集和整数解的个数确定关于m的不等式组,再求出解集即可.
【解答】解:关于x的不等式组有解,其解集为3≤x<m,
∵关于x的不等式组恰有4个整数解,
∴6<m≤7,
故选:D.
6.【分析】先解出不等式组的解集,然后根据不等式组有解且至多有4个整数解,即可求得m的取值范围,再根据多项式x2﹣(1﹣m)能在有理数范围内因式分解,可知1﹣m>0,然后即可写出符合条件的m的值.
【解答】解:由不等式组 得:3<x≤4﹣m,
∵不等式组 有解且至多有4个整数解,
∴3<4﹣m<8,
解得﹣4<m<1,
又∵多项式x2﹣(1﹣m)能在有理数范围内因式分解,
∴1﹣m>0,
∴m<1,
∴﹣4<m<1,
∴符合条件的整数m的值为﹣3,0,
即符合条件的整数m的个数为2.
故选:B.
7.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.
【解答】解:由x﹣3≥0得:x≥3,
由2x﹣5<1得:x<3,
则不等式组无解,
故答案为:无解.
8.【分析】首先解关于x的不等式,然后根据x只有3个正整数解,来确定关于m的不等式组的取值范围,再进行求解即可.
【解答】解:由3x﹣2m<x﹣m得:
,
关于x不等式3x﹣2m<x﹣m只有3个正整数解,
∴,
∴6<m≤8,
故答案为:6<m≤8.
9.【分析】先根据定义的新运算法则化简不等式组,然后解不等式组,最后根据解集为x>6确定a的取值范围即可.
【解答】解:根据新定义关于x的不等式组可化为:,
解不等式①可得:x>6,
解不等式①可得:x>3a,
因为该不等式组的解集为x>6,
∴3a≤6,解得:a≤2.
故答案为:a≤2.
10.【分析】设额温枪有x支,利用总价=单价×数量,结合总价不超过1000元,可得出关于x的一元一次不等式,解之可得出x的取值范围,再取其中的最大整数值,即可得出结论.
【解答】解:设额温枪有x支,
根据题意得:5×10+230x≤1000,
解得:x≤,
又∵x为正整数,
∴x的最大值为4,
∴额温枪至多有4支.
故答案为:4.
11.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,继而得出点P的坐标,从而得出答案.
【解答】解:解不等式x﹣1≤7﹣x,得:x≤4,
解不等式5x﹣10≥2(x+1),得:x≥4,
∴不等式组的解集为x=4,
则点P的坐标为(,﹣2).
故答案为:(,﹣2).
12.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.
【解答】解:∵,
∴x+1+8>4x,
x﹣4x>﹣1﹣8,
﹣3x>﹣9,
则x<3.
13.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.
【解答】解:(1)解不等式①,得x≥1;
(2)解不等式②,得:x<4;
(3)把不等式①和②的解集在数轴上表示出来如下:
(4)原不等式组的解集为:1≤x<4.
故答案为:x≥1,x<4,1≤x<4.
14.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,进而求出非正整数解的和即可.
【解答】解:,
解不等式①得x≤1,
解不等式②得x>﹣2,
∴不等式组的解集是:﹣2<x≤1.
∴不等式组的非正整数解为0,﹣1,
∴不等式组所有非正整数解的和为﹣1+0=﹣1.
15.【分析】(1)设A型号自拍杆的进价是x元,B型号自拍杆的进价是2x元,根据购进1件A型号和1件B型号自拍杆共需45元,其中1件B型号自拍杆价格是1件A型号自拍杆价格的2倍列方程即可得到结论;(2)设购进A型号自拍杆m件,则购进B型号自拍杆(100﹣m)件,根据全部售卖完后的总利润不低于1100元列方程,即可得到结论.
【解答】解:(1)设A型号自拍杆的进价是x元,B型号自拍杆的进价是2x元,
根据题意得,x+2x=45,
解得x=15,
答:A型号自拍杆的进价是15元,B型号自拍杆的进价是30元;
(2)设购进A型号自拍杆m件,则购进B型号自拍杆(100﹣m)件,
根据题意得,(20﹣15)m+(50﹣30)(100﹣m)≥1100,
解得m≤60,
答:最多购进A型号自拍杆60件.
专家押题
一.选择题
1.【分析】根据不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,依次进行判断即可.
【解答】解:∵x>y,a>1,
∴x+a>y+1,
故A不符合题意,D符合题意;
(x+1)与(y+a)的大小不能确定,
故B不符合题意;
ax>ay,
故C不符合题意,
故选:D.
2.【分析】根据不等式解集的表示方法,可得答案.
【解答】解:由x+1≤2x﹣1,得:
x≥2,
故选:A.
3.【分析】先根据不等式的性质求出不等式的解集,再根据求不等式组解集的规律求出不等式组的解集,最后求出不等式组的整数解即可.
【解答】解:,
解不等式①,得x<5,
解不等式②,得x≥1,
所以不等式组的解集是1≤x<5,
所以不等式组的整数解是1,2,3,4,共4个,
故选:D.
4.【分析】解关于x的不等式求得x≤,根据不等式的正整数解的情况列出关于m的不等式组,解之可得.
【解答】解:移项,得:3x≤m,
系数化为1,得:x≤,
∵不等式的正整数解为1,2,3,
∴3≤<4,
解得:9≤m<12,
故选:D.
5.【分析】设购买甲种蔬菜x千克,则购买乙种蔬菜(100﹣x)千克,利用总价=单价×数量及总利润=每千克的销售利润×销售蔬菜,结合“投入资金不少于1180元,且利润不少于500元”,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为整数,即可得出购买方案的个数.
【解答】解:设购买甲种蔬菜x千克,则购买乙种蔬菜(100﹣x)千克,
依题意得:,解得:50≤x≤55,
又∵x为整数,
∴x可以为50,51,52,53,54,55,
∴共有6种不同的购买方案,
故选:D.
6.【分析】分别求出每一个不等式的解集,根据口诀:同大取大可得m的取值范围.
【解答】解:解不等式x+5<5x+1,得:x>1,
解不等式x﹣m>0,得:x>m,
∵不等式组的解集为x>1,
∴m≤1,
故选:B.
二.填空题
7.【分析】表示出x的5倍为5x,然后求和,最后利用不等符号与零连接即可.
【解答】解:依题意得:5x+1<0.
故答案是:5x+1<0.
8.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,进而求出最大的整数解即可.
【解答】解:不等式组整理得:,解得:﹣1<x≤1,
则不等式组的最大整数解为1.
故答案为:1.
9.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【解答】解:,
解不等式①得:x<4,
解不等式②得:x≥﹣3,
则不等式组的解集为﹣3≤x<4,
所以不等式组的整数解为﹣3,﹣2,﹣1,0、1、2、3,其和为0,
故答案为:0.
10.【分析】设小明购买了A种玩具x件,则购买的B种玩具为件,根据题意列出不等式组进行解答便可.
【解答】解:设小明购买了A种玩具x件,则购买的B种玩具为件,
根据题意得,,解得,3<x≤8,
∵x为整数,也为整数,
∴x=4或6或8,
∴有3种购买方案,
故答案为:3.
11.【分析】根据题意,可以对x进行分类讨论,然后求出x的取值范围即可.
【解答】解:由题意可得,
当x>0时,|(x]|=(x]=3,则3<x≤4,
当x<0时,|(x]|=﹣(x]=3,则﹣3<x≤﹣2,
故答案为:3<x≤4或﹣3<x≤﹣2.
12.【分析】不等式组整理后,根据已知解集,利用同小取小法则判断即可确定出a的范围.
【解答】解:不等式组整理得:,
∵不等式组的解集为x<2,
∴a≥2.
故答案为:a≥2.
三.解答题
13.【分析】去分母、去括号、移项、合并同类项、系数化为1,即可求得不等式的解集,然后确定解集中的正整数解即可.
【解答】解:去分母,得1+2x>3(x﹣1),
去括号,得1+2x>3x﹣3,
移项,得2x﹣3x>﹣3﹣1,
合并同类项,得﹣x>﹣4,
系数化为1,得x<4,
则不等式的正整数解为:1,2,3.
14.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,再表示在数轴上即可.
【解答】解:,
解不等式①得x>﹣1,
解不等式②得x≤2,
∴不等式组的解集为﹣1<x≤2.
解集在数轴上表示如图.
15.【分析】(1)设甲种有机肥每吨x元,乙种有机肥每吨y元,根据“甲种有机肥每吨的价格比乙种有机肥每吨的价格多100元,购买2吨甲种有机肥和1吨乙种有机肥共需1700元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购买甲种有机肥m吨,则购买乙种有机肥(10﹣m)吨,利用总价=单价×数量,结合总价不超过5600元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.
【解答】解:(1)设甲种有机肥每吨x元,乙种有机肥每吨y元,
依题意得:,解得:.
答:甲种有机肥每吨600元,乙种有机肥每吨500元.
(2)设购买甲种有机肥m吨,则购买乙种有机肥(10﹣m)吨,
依题意得:600m+500(10﹣m)≤5600,
解得:m≤6.
答:小姣最多能购买甲种有机肥6吨.
16.【分析】(1)设改造一所A类学校所需的资金是a万元,改造一所B类学校所需的资金是b万元,可根据关键语句“改造一所A类学校和两所B类学校共需资金210万元;改造两所A类学校和一所B类学校共需资金180万元”,列出方程组,解方程组可得答案;
(2)设设该市A类学校有m所,B类学校有n所,根据“共需资金2000万元”可得50m+80n=2000,再用含n的代数式表示出m,再根据条件“A类学校不超过8所”,可得不等式﹣n+40≤8,求出解集进行判断即可;
(3)要根据“若今年国家财政拨付的改造资金不超过490万元;地方财政投入的改造资金不少于200万元”来列出不等式组,判断出不同的改造方案.
【解答】解:(1)设改造一所A类学校所需的资金是a万元,改造一所B类学校所需的资金是b万元,由题意得:
,解得:.
答:改造一所A类学校所需的资金是50万元,改造一所B类学校所需的资金是80万元;
(2)设该市A类学校有m所,B类学校有n所,由题意得:
50m+80n=2000,
m=﹣n+40,
∵A类学校不超过8所,
∴﹣n+40≤8,
∴n≥20.
答:B类学校至少有20所;
(3)设今年改造A类学校x所,则改造B类学校为(10﹣x)所,
依题意得:,解得:3≤x≤5,
∵x取整数,
∴x=3,4,5.
答:共有3种方案.