试卷答案
寻你做寻,想你所想

2022-2023高三考前冲刺模拟物理试题试卷(含解析)

2022-2023学年高三考前冲刺模拟物理试题试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、单项选择题:本题共6小题,每小题4分,共24分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、甲、乙两车在平直公路上同向行驶,其 v-t 图像如图所示。已知两车在t=3s时并排行驶,则( )
A.在t=1s 时,甲车在乙车后
B.在t=0 时,甲车在乙车前7.5m
C.两车另一次并排行驶的时刻是t=2s
D.甲、乙车两次并排行驶的位置之间沿公路方向的距离为45m
2、如图所示,在倾角为30°的斜面上,质量为1kg的小滑块从a点由静止下滑,到b点时接触一轻弹簧。滑块滑至最低点c后,又被弹回到a点,已知ab=0.6m,bc=0.4m,重力加速度g取10m/s2,下列说法中正确的是(  )
A.滑块滑到b点时动能最大
B.整个过程中滑块的机械能守恒
C.弹簧的最大弹性势能为2J
D.从c到b弹簧的弹力对滑块做功为5J
3、如图所示,两金属板平行放置,在时刻将电子从板附近由静止释放(电子的重力忽略不计)。分别在两板间加上下列哪一种电压时,有可能使电子到不了B板( )
A. B.
C. D.
4、如图所示,由三个铝制薄板互成120°角均匀分开的Ⅰ、Ⅱ、Ⅲ三个匀强磁场区域,其磁感应强度分别用表示.现有带电粒子自a点垂直Oa板沿逆时针方向射入磁场中,带电粒子完成一周运动,在三个磁场区域中的运动时间之比为1∶2∶3,轨迹恰好是一个以O为圆心的圆,则其在b、c处穿越铝板所损失的动能之比为
A.1∶1 B.5∶3
C.3∶2 D.27∶5
5、如图所示为一理恕变压器,其中a、b、c为三个额定电压相同的灯泡,输入电压u= Umsin100πt(V).当输入电压为灯泡额定电压的8倍时,三个灯泡刚好都正常发光.下列说法正确的是( )
A.三个灯泡的额定电压为Um/8
B.变压器原、副线圈匝数比为9︰2
C.此时灯泡a和b消耗的电功率之比为2︰7
D.流过灯泡c的电流,每0.02s方向改变一次
6、如图所示,一辆运送沙子的自卸卡车,装满沙子.沙粒之间的动摩擦因数为μ1,沙子与车厢底部材料的动摩擦因数为μ2,车厢的倾角用θ表示(已知μ2>μ1),下列说法正确的是
A.要顺利地卸干净全部沙子,应满足tan θ=μ2
B.要顺利地卸干净全部沙子,应满足sin θ>μ2
C.只卸去部分沙子,车上还留有一部分沙子,应满足μ2>tan θ>μ1
D.只卸去部分沙子,车上还留有一部分沙子,应满足μ2>μ1>tan θ
二、多项选择题:本题共4小题,每小题5分,共20分。在每小题给出的四个选项中,有多个选项是符合题目要求的。全部选对的得5分,选对但不全的得3分,有选错的得0分。
7、下列说法正确的是(  )
A.悬浮颗粒的无规则运动并不是分子的运动,但能间接地反映液体分子运动的无规则性
B.一种物质温度升高时,所有分子热运动的动能都要增加
C.液体能够流动说明液体分子间的相互作用力比固体分子间的作用力要小
D.一定质量的物质,汽化时吸收的热量与液化时放出的热量相等
E.一切自然过程总是沿着分子热运动的无序性增大的方向进行
8、关于固体、液体、气体和物态变化,下列说法中正确的是______________。
A.液体表面存在着张力是因为液体表面层分子间的距离大于液体内部分子间的距离
B.一定质量的某种理想气体状态改变时,内能必定改变
C.0的铁和0的冰,它们的分子平均动能相同
D.晶体一定具有规则形状,且有各向异性的特征
E.扩散现象在液体和固体中都能发生,且温度越高,扩散进行得越快
9、下列说法正确的是________。
A.物体放出热量,温度一定降低
B.温度是物体分子平均动能大小的标志
C.布朗运动反映的是液体分子的无规则运动
D.根据热力学第二定律可知,热量不可能从低温物体传到高温物体
E.气体对容器壁的压强是由于大量气体分子对器壁的频繁碰撞作用产生的
10、如图所示,一物块从倾角为θ的斜面底端以初速度沿足够长的斜面上滑,经时间t速度减为零,再经2t时间回到出发点,下列说法正确的是( )
A.物块上滑过程的加速度大小是下滑过程加速度大小的2倍
B.物块返回斜面底端时的速度大小为
C.物块与斜面之间的动摩擦因数为
D.物块与斜面之间的动摩擦因数为
三、实验题:本题共2小题,共18分。把答案写在答题卡中指定的答题处,不要求写出演算过程。
11.(6分)实验小组要测定一个电源的电动势E和内阻r。已知待测电源的电动势约为5V,可用的实验器材有:
待测电源;
电压表V1(量程0~3V;内阻约为3kΩ);
电压表V2(量程0~6V;内阻约为6kΩ);
定值电阻R1(阻值2.0Ω);
滑动变阻器R2(阻值0~20.0Ω);
开关S一个,导线若干。
(1)实验小组的某同学利用以上器材,设计了如图甲所示的电路,M、N是电压表,P、Q分别是定值电阻R1或滑动变阻器R2,则P应是_________(选填“R1”或“R2”)。
(2)按照电路将器材连接好,先将滑动变阻器调节到最大值,闭合开关S,然后调节滑动变阻器的阻值,依次记录M、N的示数UM、UN。
(3)根据UM、UN数据作出如图乙所示的关系图像,由图像得到电源的电动势E=_________V,内阻r=_________Ω。(均保留2位有效数字)
(4)由图像得到的电源的电动势值_________(选填“大于”、“小于”、“等于”)实际值。
12.(12分)某些固体材料受到外力后除了产生形变,其电阻率也要发生变化,这种由于外力的作用而使材料电阻率发生变化的现象称为“压阻效应”.现用如图所示的电路研究某长薄板电阻Rx的压阻效应,已知Rx的阻值变化范围为几欧到几十欧,实验室中有下列器材:
A.电源E(电动势3 V,内阻约为1 Ω)
B.电流表A1(0~0.6 A,内阻r1=5 Ω)
C.电流表A2(0~0.6 A,内阻r2≈1 Ω)
D.开关S,定值电阻R0=5 Ω
(1)为了比较准确地测量电阻Rx的阻值,请完成虚线框内电路图的设计______.
(2)在电阻Rx上加一个竖直向下的力F(设竖直向下为正方向),闭合开关S,记下电表读数,A1的读数为I1,A2的读数为I2,得Rx=________.(用字母表示)
(3)改变力的大小,得到不同的Rx值,然后让力反向从下向上挤压电阻,并改变力的大小,得到不同的Rx值.最后绘成的图象如图所示,除观察到电阻Rx的阻值随压力F的增大而均匀减小外,还可以得到的结论是________________________.当F竖直向下时,可得Fx与所受压力F的数值关系是Rx=________.
四、计算题:本题共2小题,共26分。把答案写在答题卡中指定的答题处,要求写出必要的文字说明、方程式和演算步骤。
13.(10分)如图所示,竖直平面MN与纸面垂直,MN右侧的空间存在着垂直纸面向内的匀强磁场和水平向左的匀强电场,MN左侧的水平面光滑,右侧的水平面粗糙.质量为m的物体A静止在MN左侧的水平面上,已知该物体带负电,电荷量的大小为为q.一质量为的不带电的物体B以速度v0冲向物体A并发生弹性碰撞,碰撞前后物体A的电荷量保持不变.求:
(1)碰撞后物体A的速度大小;
(2)若A与水平面的动摩擦因数为μ,重力加速度的大小为g,磁感应强度的大小为 ,电场强度的大小为.已知物体A从MN开始向右移动的距离为时,速度增加到最大值.求:
a.此过程中物体A克服摩擦力所做的功W;
b.此过程所经历的时间t.
14.(16分)2018年8月美国航空航天科学家梅利莎宣布开发一种仪器去寻找外星球上单细胞微生物在的证据,力求在其他星球上寻找生命存在的迹象。如图所示,若宇航员在某星球上着陆后,以某一初速度斜面顶端水平抛出一小球,小球最终落在斜面上,测得小球从抛出点到落在斜面上点的距离是在地球上做完全相同的实验时距离的k倍。已知星球的第二宇宙速度是第一宇宙速度的倍,星球的半径为R,地球表面的重力加速度为g,求:
(1)星球表面处的重力加速度;
(2)在星球表面一质量为飞船要有多大的动能才可以最终脱离该星球的吸引。
15.(12分)理论研究表明暗物质湮灭会产生大量高能正电子,所以在宇宙空间探测高能正电子是科学家发现暗物质的一种方法。下图为我国某研究小组设计的探测器截面图:开口宽为的正方形铝筒,下方区域Ⅰ、Ⅱ为方向相反的匀强磁场,磁感应强度均为B,区域Ⅲ为匀强电场,电场强度,三个区域的宽度均为d。经过较长时间,仪器能接收到平行铝筒射入的不同速率的正电子,其中部分正电子将打在介质MN上。已知正电子的质量为m,电量为e,不考虑相对论效应及电荷间的相互作用。
(1)求能到达电场区域的正电子的最小速率;
(2)在区域Ⅱ和Ⅲ的分界线上宽度为的区域有正电子射入电场,求正电子的最大速率;
(3)若L=2d,试求第(2)问中最大速度的正电子打到MN上的位置与进入铝筒位置的水平距离。
参考答案
一、单项选择题:本题共6小题,每小题4分,共24分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【解析】
在速度时间图象中,图象与坐标轴围成面积表示位移,根据位移关系分析两车位置关系.可结合几何知识分析两车另一次并排行驶的时刻.并求出两车两次并排行驶的位置之间沿公路方向的距离.
【详解】
A. 根据“面积”大小表示位移,由图象可知,1s到3s甲、乙两车通过的位移相等,两车在t=3s时并排行驶,所以两车在t=1s时也并排行驶,故A错误;
B. 由图象可知,甲的加速度a甲=△v甲/△t甲=20/2=10m/s2;乙的加速度a乙=△v乙/△t乙=(20 10)/2=5m/s2;0至1s,甲的位移x甲=a甲t2=×10×12=5m,乙的位移x乙=v0t+a乙t2=10×1+×5×12=12.5m,△x=x乙 x甲=12.5 5=7.5m,即在t=0时,甲车在乙车前7.5m,故B正确;
C.1s末甲车的速度为:v=a甲t=10×1=10m/s,乙车的速度v′=10+5×1=15m/s;1 2s时,甲的位移x1=10×1+×10×12=15m;乙的位移x2=15×1+×5×1=17.5m;在1s时两车并联,故2s时两车相距2.5m,且乙在甲车的前面,故C错误;
D. 1s末甲车的速度为:v=a甲t=10×1=10m/s,1到3s甲车的位移为:x=vt+a甲t2=10×2+×10×22=40m,即甲、乙两车两次并排行驶的位置之间沿公路方向的距离为40m,故D错误。
故选:B
2、D
【解析】
A.根据题中“小滑块从a点由静止下滑和又被弹回到a点”可知:滑块和斜面间无摩擦,滑块滑到b时,合力为重力沿斜面的分力,加速度和速度同向,继续加速,当重力沿斜面的分力和弹簧弹力相等时,速度最大,故A错误;
B.整个过程中,滑块和弹簧组成的系统机械能守恒,滑块的机械能从a到b不变,从b到c机械能逐渐减小,转化为弹簧的弹性势能,c到b弹簧的弹性势能逐渐减小,滑块的机械能逐渐增加,从b到a机械能不变,故B错误;
C.对滑块和弹簧组成的系统,从a到c过程,根据能量转化关系有
代入数据解得
J
故C错误;
D.从c到b弹簧的弹力对滑块做正功,弹簧的弹性势能全部转化为滑块的机械能,根据功能关系可知,弹簧的弹力对滑块做了5J的功,故D正确。
故选D。
3、B
【解析】
加A图电压,电子从板开始向板做匀加速直线运动;加B图电压,电子开始向板做匀加速运动,再做加速度大小相同的匀减速运动,速度减为零后做反向匀加速运动及匀减速运动,由电压变化的对称性可知,电子将做周期性往复运动,所以电子有可能到不了板;加C图电压,电子先匀加速,再匀减速到静止,完成一个周期,电子一直向板运动,即电子一定能到达板;加D图电压,电子的运动与C图情形相同,只是加速度是变化的,所以电子也一直向板运动,即电子一定能到达板,综上所述可知选项B正确。
4、D
【解析】
带电粒子在磁场运动的时间为,在各个区域的角度都为,对应的周期为,则有,故 ,则三个区域的磁感应强度之比为,三个区域的磁场半径相同为,又动能,联立得,故三个区域的动能之比为:,故在b处穿越铝板所损失的动能为,故在c处穿越铝板所损失的动能为,故损失动能之比为,D正确,选D.
5、C
【解析】
设灯泡的额定电压为U,根据题意,输入电压,得:,此时原线圈两端的电压为,副线圈两端的电压为,则变压器原、副线圈匝数比为,根据,因为a、b此时都能正常发光,故电压都为额定电压 ,根据,可知a、b消耗的电功率与电流成正比,即此时灯泡a和b消耗的电功率之比为2︰7,由输入电压的表达式,可知角频率,则周期,而变压器不会改变交变电流的周期,故每0.02s电流方向改变两次,故ABD错误,C正确;故选C.
【点睛】根据灯泡电压与输入电压的关系可确定接在线圈的输入端和输出端的电压关系,则可求得匝数之比;根据变压器电流之间的关系和功率公式可确定功率之比.
6、C
【解析】
假设最后一粒沙子,所受重力沿斜面向下的分力大于最大静摩擦力时,能顺利地卸干净全部沙子,有,B对;若要卸去部分沙子,以其中的一粒沙子为研究对象,,C对;
二、多项选择题:本题共4小题,每小题5分,共20分。在每小题给出的四个选项中,有多个选项是符合题目要求的。全部选对的得5分,选对但不全的得3分,有选错的得0分。
7、AE
【解析】
A.布朗运动是悬浮颗粒的无规则运动并不是分子的运动,但能间接地反映液体分子运动的无规则性,A正确;
B.一种物质温度升高时,分子的平均动能增加,这是一种统计规律,可能有的分子热运动的动能要增加,有的反而要减少,B错误;
C.液体能够流动与液体分子间作用力无必然联系,固体有固定形状也与固体间分子作用力无必然联系,C错误;
D.一定质量的物质,在一定的温度和压强下,汽化时吸收的热量与液化时放出的热量相等,D错误;
E.一切自然过程总是沿着分子热运动的无序性增大的方向进行,E正确。
故选AE。
8、ACE
【解析】
A.由于液体表面分子间距大于内部分子间距,故表面处表现为引力,故A正确;
B.一定质量理想气体的内能由温度决定,状态变化时温度可能不变,内能也就可能不变,故B错误;
C.因为温度是分子平均动能的标志,温度相同,则分子平均动能相同,故C正确;
D.晶体分单晶体和多晶体,只有单晶体具有规则形状,某些性质表现出各向异性,而多晶体没有规则形状,表现出各向同性,故D错误;
E.气体、液体和固体物质的分子都在做无规则运动,所以扩散现象在这三种状态的物质中都能够进行,且温度越高,扩散进行得越快,故E正确。
故选ACE。
9、BCE
【解析】
A.物体放出热量,但是如果外界对物体做功,则物体的内能不一定减小,温度不一定降低,选项A错误;
B.温度是物体分子平均动能大小的标志,选项B正确;
C.布朗运动反映的是液体分子的无规则运动,选项C正确;
D.根据热力学第二定律可知,热量可以从低温物体传到高温物体,但是要引起其他的变化,选项D错误;
E.气体对容器壁的压强是由于大量气体分子对器壁的频繁碰撞作用产生的,选项E正确;
故选BCE.
10、BC
【解析】
A.根据匀变速直线运动公式得:
则:
x相同,t是2倍关系,则物块上滑过程的加速度大小是下滑过程加速度大小的4倍,故A错误;
B.根据匀变速直线运动公式得:,则物块上滑过程的初速度大小是返回斜面底端时的速度大小的2倍,故B正确;
CD.以沿斜面向下为正方向,上滑过程,由牛顿第二定律得:
mgsinθ+μmgcosθ=ma1
下滑过程,由牛顿第二定律得:
mgsinθ-μmgcosθ=ma2

a2=4a1
联立解得:
故C正确,D错误。
故选BC。
三、实验题:本题共2小题,共18分。把答案写在答题卡中指定的答题处,不要求写出演算过程。
11、R2 4.9 0. 90~1. 0 小于
【解析】
(1)[1]由电路图可知,电压表M测量P、Q总电压,电压表N测量Q的电压,故M为大量程的电压表V2,N为小量程的电压表V1,根据部分电路欧姆定律可知P为大量程的滑动变阻器R2,Q为小阻值的定值电阻R1。
(3)[2][3]设电压表M的示数为UM,电压表N的示数为UN,由图示电路图可知,电源电动势为
整理得:
由UM-UN图象可知,电源电动势为E=4.9V,由图可知图线的斜率为:
又从UM-UN的关系可知:
则电源内阻为:r=kR1=0.94Ω。
(4)[4]根据题意可知:
变形得:
所以图象的纵截距为:
则电源电动势为
所以根据图象得到的电源电动势值小于实际值。
12、 压力方向改变,其阻值不变
【解析】
(1)由于题目中没有电压表,为了比较准确测量电阻,知道电流表 的阻值,所以用电流表作为电压表使用,电流表 连在干路上,即可求出电阻的阻值,电路图的设计:
(2)根据串并联和欧姆定律得:,得到:.
(3)从图象上可以看出压力方向改变,其阻值不变,其电阻与压力关系为一次函数,由图象可得:.
四、计算题:本题共2小题,共26分。把答案写在答题卡中指定的答题处,要求写出必要的文字说明、方程式和演算步骤。
13、(1)(2)a.b.
【解析】
(1)设A、B碰撞后的速度分别为vA、vB,由于A、B发生弹性碰撞,动量、动能守恒,则有:


联立①②可得:

(2)a.A的速度达到最大值vm时合力为零,受力如图所示.
竖直方向合力为零,有:

水平方向合力为零,有:

根据动能定理,有:

联立③④⑤⑥并代入相相关数据可得:
b.方法一:
在此过程中,设A物体运动的平均速度为,根据动量定理有:


依题意有:

联立③④⑤⑦⑧⑨并代入相关数据可得:
方法二:设任意时刻A物体运动的速度为v,取一段含此时刻的极短时间Δt,设此段时间内速度的改变量为Δv,根据动量定理有:




联立③④⑤⑦⑧⑨并代入相关数据可得:
14、(1) (2)
【解析】
(1)设斜面倾角为,小球在地球上做平抛运动时,有
设斜面上的距离为l,则
联立解得
小球在星球上做平抛运动时,设斜面上的距离为,星球表面的重力加速为,同理由平抛运动的规律有
联立解得星球表面处的重力加速度
(2)飞船在该星球表面运动时,有
近地有
联立解得飞船的第一宇宙速度
一质量为的飞船要摆脱该星球的吸引,其在星球表面具有的速度至少是第二宇宙速度,所以其具有的动能至少为
15、 (1);(2);(3)
【解析】
(1)正电子在磁场中只受洛伦兹力作用,故正电子做匀速圆周运动,洛伦兹力做向心力;在电场中正电子只受电场力作用,做匀变速运动;正电子离开电场运动到MN的过程不受力,做匀速直线运动;
根据两磁场磁场方向相反,磁感应强度相等,故正电子在其中做匀速圆周运动的轨道半径相等,偏转方向相反,所以正电子离开磁场时的速度竖直向下;
故正电子能到达电场区域,则正电子在磁场中在匀速圆周运动的轨道半径R≥d;
那么由洛伦兹力做向心力可得
所以正电子速度
故能到达电场区域的正电子的最小速率为;
(2)根据几何关系可得:正电子进入磁场运动到区域Ⅱ和Ⅲ的分界线时,正电子水平位移偏移
故轨道半径R越大,水平偏移量越小;由(1)可得:最大偏移量
△xmax=2d;
故有探测器正方向开口宽为,在区域Ⅱ和Ⅲ的分界线上宽度为的区域有正电子射入电场可得:正电子最小偏移量
所以由可得正电子运动轨道半径最大为
故根据洛伦兹力做向心力可得:正电子的最大速率
(3)速度最大的正电子垂直射入电场时,在电场中运动的时间
在电场中水平方向的位移
解得
进入无场区域时运动的时间
在无场区域内运动的水平位移
解得
则最大速度的正电子打到MN上的位置与进入铝筒位置的水平距离

转载请注明出处卷子答案网-一个不只有答案的网站 » 2022-2023高三考前冲刺模拟物理试题试卷(含解析)

分享:

相关推荐