2023-2024学年人教版八年级数学上册《第15章分式》同步练习题(附答案)
一、选择题
1.下列式子是分式的有( )
,x﹣1,,,,,(x+y),,.
A.8个 B.5个 C.6个 D.7个
2.分式,与的最简公分母是( )
A.(m2﹣m)m2 B.m C.m2(m﹣1) D.m2﹣m
3.当x为任意实数时,下列分式有意义的是( )
A. B. C. D.
4.下列分式中与的值相等的分式是( )
A. B. C.﹣ D.﹣
5.若代数式÷有意义,则x的取值范围是( )
A.x≠2 B.x≠2且x≠4
C.x≠3且x≠4 D.x≠2,x≠3且x≠4
6.如果把分式(a≠b)中的a、b都扩大为原来的3倍,那么分式的值( )
A.缩小为原来的 B.扩大为原来的3倍
C.扩大为原来的9倍 D.不变
7.有m个数的平均值是x,n个数的平均值是y,则这m+n个数的平均值是( )
A. B. C. D.x+y
8.若a,b为实数,满足=,则( )
A.﹣1 B.0 C. D.1
9.设a、b、c满足abc≠0,且a+b=c,则的值为( )
A.﹣1 B.1 C.2 D.3
10.若三角形三边分别为a、b、c,且分式的值为0( )
A.不等边三角形
B.腰与底边不等的等腰三角形
C.等边三角形
D.直角三角形
二、填空题
11.当x 时,分式有意义 时,分式的值为零.
12.设=,则= .
13.计算:= .
154.已知a:b:c=1:2:3,则分式的值为 .
15.若=﹣,则x的取值范围是 .
16.若a2+5ab﹣b2=0,则的值为 .
17.下列结论:①不论a为何值时,都有意义;②a=﹣1时的值为0;③若,则x的取值范围是x<1;④若÷,则x的取值范围是x≠﹣2且x≠0,其中正确的是 .
18.已知,则= .
19.“五 一”期间,几名同学共同包租一辆面包车去某地旅游,面包车的租价为120元,结果每位同学少分摊3元.则原来旅游同学的人数为 .
三、解答题
20.计算:
(1) ;
(2)++;
(3)()4 ()3÷()5;
(4)÷(x+2﹣).
21.请从下列三个代数式中任选两个构造一个分式,并化简该分式.a2﹣4,a2﹣2a,a2﹣4a+4.
(1)构造的分式是: .
(2)化简: .
22.已知a+b+c=0且abc≠0,求的值.
23.先化简:,然后再从﹣2<x≤2的范围内选取一个合适的整数x代入求值.
24.老师在黑板上书写了一个代数式的正确计算结果,随后用手遮住了原代数式的一部分,如图:◆(﹣)÷=.
(1)求被手遮住部分的代数式,并将其化简;
(2)原代数式的值能等于﹣1吗?请说明理由.
25.小聪同学解分式方程﹣1=如下,并写出正确的解题过程.
解:去分母 2x+5﹣1=2﹣x①
移项 2x+x=2﹣5+1②
合并 3x=﹣2③
系数化1 x=④
26.阅读下面的解题过程:
已知:=,求的值.
解:由=知x≠0,所以=3.
所以=x2+=(x+)2﹣2=32﹣2=7.
故的值为.
该题的解法叫做“倒数法”,请你利用“倒数法”解决下面的题目:
已知:=,求的值.
27.某公司生产的960件新产品,需要精加工后才能投放市场.现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完这批产品多用20天,公司需付甲工厂加工费用每天80元,乙工厂费用每天120元.
(1)求甲乙两个工厂每天各能加工多少件产品?
(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家同时合作完成.在加工过程中,公司派一名工程师每天到厂进行指导
请你帮助公司选择一种既省时又省钱的加工方案,并说明理由.
参考答案
一、选择题
1.解:在,,,,的分母中含有字母.
故选:B.
2.解:分式,与的最简公分母是m2(m﹣4).
故选:C.
3.解:A、当x=0时,x2=4.故本选项不符合题意.
B、当x=1时.故本选项不符合题意.
C、当x=﹣1时.故本选项不符合题意.
D、无论x为何值,x6+1≠0,故本选项符合题意.
故选:D.
4.解:上下同乘﹣1得:,故选B.
5.解:∵÷=有意义,
∴x﹣4≠0,x﹣4≠4,
∴x≠2,x≠3,
故选:D.
6.解:把分式(a≠b)中的a,
则分式的值为:=,故分式的值扩大为原来的3倍.
故选:B.
7.解:∵m个数的平均值是x,n个数的平均值是y,
∴这m+n个数的平均值是;
故选:C.
8.解:由=,两边同乘以a+b,得
﹣=1,
即1+﹣﹣3=1,
所以,﹣=1.
故选:D.
9.解:∵a+b=c,
∴b=c﹣a,c=a+b,
∴++,
=++,
=++
=++
=++
=1+7﹣1
=1
故选:B.
10.解:依题意得 ab﹣ac+bc﹣b2=0且a﹣c≠6.
整理得 (b﹣c)(a﹣b)=0且a≠c,
解得 b=c或a=b且a≠c,
故该三角形是腰与底边不等的等腰三角形,
故选:B.
二、填空题
11.解:由题意,得
x+1≠0,
解得x≠﹣5,
由题意,得
x2﹣9=8且x﹣3≠0,
解得x=﹣7,
故答案为:x≠﹣1;﹣3.
12.解:∵=2﹣=,
∴=2﹣=,
∴=;
故答案为:.
13.解:
=
=x﹣1.
故答案为:x﹣2.
14.解:∵a:b:c=1:2:2,
∴设a=x,b=2x,
故==.
故答案为:.
15.解:若,
则有|x﹣8|=1﹣x,
就有x﹣1<4,
则x<1.
故答案为:x<1.
16.解:∵a2+5ab﹣b7=0,
∴b2﹣a4=5ab,
∴﹣===5.
故答案为:4.
17.解:①正确,∵a不论为何值不论a2+2>3,∴不论a为何值;
②错误,∵当a=﹣3时,a2﹣1=4﹣1=0,此时分式无意义;
③正确,∵若,即x﹣3<0,∴此结论正确;
④错误,根据分式成立的意义及除数不能为0的条件可知,若,则x的取值范围是即,x≠0且x≠﹣2.
故正确的结论是:①③.
18.解:已知等式整理得:=3,
则原式=,
=,
=5.
故答案为:5.
19.解:设原来旅游同学的人数为x人,那么出发时共有同学x+2人.
得:
解得:x=8,检验符合题意.
因此原来旅游同学的人数为8人.
三、解答题
20.解:(1)原式= =;
(2)原式=﹣+
=
=
=;
(3)原式=
=﹣
=﹣;
(4)原式=÷
=﹣
=﹣.
21.解:∵a2﹣4,a7﹣2a,a2﹣4a+4.任选两个构造一个分式,
即:,
∴==,
故答案为:,.
22.解:a(+)+b(++)+2
=++++++2
=+++7
∵a+b+c=0,
∴a+c=﹣b,a+b=﹣c,
∴原式=+++2=﹣6﹣1﹣1+2=﹣1.
23.解:原式=+
=+
=+
=
=,
当x=﹣6时,原式=0.
24.解:(1)被手遮住部分的代数式为:
÷(﹣)
= [﹣]
=﹣;
(2)原代数式的值不能等于﹣1,
理由是:=﹣1,
x+4=﹣(x﹣1),
x+1=﹣x+6,
x+x=1﹣1,
6x=0,
x=0,
要使代数式﹣(﹣有意义,
即x不能为1,﹣1,5,
所以原代数式的值不能等于﹣1.
25.解:错在第①步,
正确解题过程为:去分母得:2x+5﹣x+6=2﹣x,
移项合并得:2x=﹣6,
解得:x=﹣3,
经检验x=﹣3是分式方程的解.
26.解:∵,且x≠3,
∴,
∴x+﹣2=5,
∴x+=4,
∴=x2++1=(x+)2﹣1=63,
∴=
27.解:(1)设甲工厂每天能加工x件产品,则乙工厂每天能加工1.5x件产品.
依题意得:.
解得:x=16.
检验:x=16是原方程的一个解.
答:甲工厂每天能加工16件,乙工厂每天能加工24件.
(2)甲工厂单独完成需960÷16=60(天),所需费用为80×60+5×60=5100(元)
乙工厂单独完成需960÷24=40(天),所需费用为120×40+5×40=5000(元)
设他们合作完成这批新产品所用时为y天.
则:(+)×y=7.
解得:y=24.
所需费用为(80+120)×24+5×24=4920(元).
答:通过比较,选择甲.
转载请注明出处卷子答案网-一个不只有答案的网站 » 《第15章分式》同步练习题 (含答案)2023-2024人教版八年级数学上册