青岛市2023年高三年级第一次适应性检测
数学试题
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知全集,,,则下图中阴影部分表示的集合为( )
A. B. C. D.
2.已知复数z满足,则复数z的虚部为( )
A.1 B. C. D.
3.在平面直角坐标系中,若角的顶点为坐标原点,始边为x轴的非负半轴,终边经过点,则( )
A. B. C. D.
4.龙洗,是我国著名的文物之一,因盆内有龙纹故称龙洗,为古代皇宫盥洗用具,其盆体可以近似看作一个圆台.现有一龙洗盆高15cm,盆口直径40cm,盆底直径20cm.现往盆内倒入水,当水深6cm时,盆内水的体积近似为( )
A. B. C. D.
5.定义域为R的函数满足:当时,,且对任意实数x,均有,则( )
A.3 B.2 C. D.
6.已知双曲线的左、右焦点分别为,,直线与C的左、右两支分别交于A,B两点,若四边形为矩形,则C的离心率为( )
A. B.3 C. D.
7.某次考试共有4道单选题,某学生对其中3道题有思路,1道题完全没有思路.有思路的题目每道做对的概率为0.8,没有思路的题目,只好任意猜一个答案,猜对的概率为0.25.若从这4道题中任选2道,则这个学生2道题全做对的概率为( )
A.0.34 B.0.37 C.0.42 D.0.43
8.已知函数,若,,,,则a,b,c的大小关系为( )
A. B. C. D.
二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
9.在的展开式中,下列说法正确的是( )
A.常数项是1120 B.第四项和第六项的系数相等
C.各项的二项式系数之和为256 D.各项的系数之和为256
10.下列说法正确的是( )
A.若直线a不平行于平面,,则内不存在与a平行的直线
B.若一个平面内两条不平行的直线都平行于另一个平面,则
C.设l,m,n为直线,m,n在平面内,则“”是“且”的充要条件
D.若平面平面,平面平面,则平面与平面所成的二面角和平面与平面所成的二面角相等或互补
11.1979年,李政道博士给中国科技大学少年班出过一道智趣题:“5只猴子分一堆桃子,怎么也不能分成5等份,只好先去睡觉,准备第二天再分.夜里1只猴子偷偷爬起来,先吃掉1个桃子,然后将其分成5等份,藏起自己的一份就去睡觉了;第2只猴子又爬起来,吃掉1个桃子后,也将桃子分成5等份,藏起自己的一份睡觉去了;以后的3只猴子都先后照此办理.问最初至少有多少个桃子?最后至少剩下多少个桃子?”.下列说法正确的是( )
A.若第n只猴子分得个桃子(不含吃的),则
B.若第n只猴子连吃带分共得到个桃子,则为等比数列
C.若最初有3121个桃子,则第5只猴子分得256个桃子(不含吃的)
D.若最初有k个桃子,则必有的倍数
12.已知A,B是平面直角坐标系中的两点,若,,则称B是A关于圆的对称点.下面说法正确的是( )
A.点关于圆的对称点是
B.圆上的任意一点A关于圆的对称点就是A自身
C.圆上不同于原点O的点M关于圆的对称点N的轨迹方程是
D.若定点E不在圆上,其关于圆C的对称点为D,A为圆C上任意一点,则为定值
三、填空题:本题共4个小题,每小题5分,共20分.
13.已知,,,若向量,且与的夹角为钝角,写出一个满足条件的的坐标为______.
14.已知O为坐标原点,在抛物线上存在两点E,F,使得是边长为4的正三角形,则______.
15.湿地公园是国家湿地保护体系的重要组成部分,某市计划在如图所示的四边形ABCD区域建一处湿地公园.已知,,,,千米,则______千米.
16.设函数是定义在整数集Z上的函数,且满足,,对任意的,都有,则______;______.(本小题第一空2分,第二空3分)
四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.
17.(10分)已知函数,,是的两个相邻极值点,且满足.
(1)求函数图象的对称轴方程;
(2)若,求.
18.(12分)已知等差数列的前n项和为,公差,,,成等差数列,,,成等比数列.
(1)求;
(2)记数列的前n项和为,,证明数列为等比数列,并求的通项公式.
19.(12分)如图,在中,,且,,将绕直角边PA旋转到处,得到圆锥的一部分,点D是底面圆弧BC(不含端点)上的一个动点.
(1)是否存在点D,使得?若存在,求出的大小;若不存在,请说明理由;
(2)当四棱锥体积最大时,求平面PCD与平面PBD夹角的余弦值.
20.(12分)今天,中国航天仍然迈着大步向浩瀚宇宙不断探索,取得了举世瞩目的非凡成就.某学校为了解学生对航天知识的知晓情况,在全校学生中开展了航天知识测试(满分100分),随机抽取了100名学生的测试成绩,按照,,,分组,得到如下所示的样本频率分布直方图:
(1)根据频率分布直方图,估计该校学生测试成绩的中位数;
(2)用样本的频率估计概率,从该校所有学生中随机抽取10名学生的成绩,用表示这10名学生中恰有k名学生的成绩在上的概率,求取最大值时对应的k的值;
(3)从测试成绩在的同学中再次选拔进入复赛的选手,一共有6道题,从中随机挑选出4道题进行测试,至少答对3道题者才可以进入复赛.现有甲、乙两人参加选拔,在这6道题中甲能答对4道,乙能答对3道,且甲、乙两人各题是否答对相互独立.记甲、乙两人中进入复赛的人数为,求的分布列及期望.
21.(12分)已知O为坐标原点,椭圆的左,右焦点分别为,,A为椭圆C的上顶点,为等腰直角三角形,其面积为1.
(1)求椭圆C的标准方程;
(2)直线l交椭圆C于P,Q两点,点W在过原点且与l平行的直线上,记直线WP,WQ的斜率分别为,,的面积为S.从下面三个条件①②③中选择两个条件,证明另一个条件成立.
①;②;③W为原点O.
注:若选择不同的组合分别解答,则按第一个解答计分.
22.(12分)已知函数,圆.
(1)若,写出曲线与圆C的一条公切线的方程(无需证明);
(2)若曲线与圆C恰有三条公切线.
(i)求b的取值范围;
(ii)证明:曲线上存在点,对任意,.青岛市 2023 年高三年级第一次适应性检测
数学参考答案及评分标准
一、单项选择题:本题共 8小题,每小题 5分,共 40分。
1--8:AC B B D C CA
二、多项选择题:本题共 4小题,每小题 5分,共 20分。
9.AC 10.AB 11.ABD 12.BCD
三、填空题:本题共 4个小题,每小题 5分,共 20分。
13. ( 1, 2) 3 1答案不唯一; 14. ; 15. 2 3 ; 16.0 , .
3 1011
四、解答题:本题共 6小题,共 70分。解答应写出文字说明,证明过程或演算步骤。
17. (本小题满分 10分)
解:(1)由题意得 f (x) 2cos2 x sin 2 x 1 cos 2 x sin 2 x
2 sin(2 x π ) 1 ························································ 2 分
4
T 2π 2 2π因为 ,所以 1 ······································································3 分
T
所以 f (x) 2 sin(x π ) 1
4
令 x π kπ π π 得, x kπ ( k Z)
4 2 4
所以函数 f (x) π图象的对称轴方程为 x kπ ( k Z)····································5 分
4
1 π 2
(2)由 f ( ) 得 sin( ) ··························································· 6 分
3 4 3
所以 sin cos 2 4 4 ,所以 (sin cos )2 ,即1 sin 2
3 9 9
所以 sin 2 5 ······················································································· 10 分
9
18.(本小题满分 12分)
解:(1)因为 S2 ,S4 ,S5 4成等差数列, a2 ,a4 ,a8 成等比数列
2S
所以 4
S2 S5 4
2 ················································································· 2 分
a4 a2 a8
2(4a1 6d) (2a所以 1
d) (5a1 10d) 4 a d 4
2 ,整理得
1
(a1 3d ) (a1 d )(a1 7d )
a d d
2
1
因为 d 0,解得: a1 d 2 ······································································· 5 分
所以 S 2n n(n 1) 2 n 2n n ································································· 6 分2
数学评分标准 第 1页(共 8页)
n 2 n 3
(2)由(1)得 2bn Tn , 2b T ,····················· 7 分n(n 1) n 1 n 1 (n 1)(n 2)
2b n 2 n 3所以两式相减得: n 2bn 1+Tn 1 Tn ························8 分n(n 1) (n 1)(n 2)
2 1
整理得: 2bn bn 1 n(n 1) (n 1)(n 2)
2[b 1 1所以 n ] b n(n 1) n 1 (n 1)(n 2)
b 1 1即 n 1 2(bn ) ············································································10 分Sn 1 Sn
b 3因为 1 ,b
1
1 1 0 ,2 1 2
{b 1所以 n }是以1为首项, 2 为公比的等比数列············································ 11 分Sn
1 1
所以b n 1 n 1n 2 ,所以bn 2 ··········································· 12 分n(n 1) n(n 1)
19.(本小题满分 12分)
解:(1)当D π为圆弧BC的中点,即 CAD 时, BC PD ···························1 分
3
证明如下:因为D为圆弧BC的中点,
π
所以 CAD BAD ,即 AD为 CAB的平分线
3
因为 AC AB,所以 AD为等腰△CAB的高线,即 AD BC ····························2 分
因为 PA AB,PA AC ,AB AC A,AB,AC 平面 ABDC
所以 PA 平面 ABDC,所以 PA BC ·························································· 3 分
因为 PA AD A,所以 BC 面 PAD
所以 BC PD ···························································································· 4 分
(2)由(1)得,PA为四棱锥 P ABDC的高,
因为 PA 4 ,所以,当底面积 SABDC 取最大值时,四棱锥 P ABDC体积最大······· 5 分
CAD BAD 2π 2π设 ,则 , (0, )
3 3
S S S 1ABDC CAD BAD 2 2 sin
1
2 2 sin(2 )
2 2 3
2[sin sin( 2π )] 2 3 sin( π )
3 6
(0, 2π), π ( π , 5π因为 )
3 6 6 6
π
所以 时, sin( π ) 1, S 取最大值 2 3
3 6 ABDC
数学评分标准 第 2页(共 8页)
所以,当四棱锥 P π ABDC体积最大时, CAD BAD ····························7 分
3
过 A在平面 ABDC内作直线 AE AB,交圆弧 BC于点 E,
由题, AE, AB, AP 两两垂直,以 A为原点,分别以 AE, AB, AP 所在直线为 x轴, y轴,
z轴建立如图所示空间直角坐标系,································································ 8 分
则 A(0,0,0),P(0,0, 4),B(0, 2,0),D( 3,1,0),C( 3, 1,0)
因为 PD ( 3,1, 4),CD (0,2,0),DB ( 3,1,0),······································9 分
设平面 PCD的法向量为 n (x1, y , z )
z
1 1
n PD 0 3x y 4z 0 P
则 ,即
1 1 1 ,
n CD 0 2y 0 1
令 z1 3 ,得 n (4,0, 3) ····························· 10 分
设平面 PBD的法向量为m (x A B
2
, y2 , z2 ) y
m PD 0 3x y 4z 0 C则 ,即 2 2 2 , D
m DB 0 3x y 0
E x
2 2
令 z2 3,得m (2, 2 3, 3) ··································································· 11 分
PCD PBD cos | m n | 11设平面 与平面 的夹角为 ,则
|m | | n | 19
所以平面 PCD 11与平面 PBD夹角的余弦值为 ············································· 12 分
19
20.(本小题满分 12分)
解:(1)因为前 2个矩形面积之和为 (0.01 0.03) 10 0.4 0.5 ,
前3个矩形面积之和为 (0.01 0.03 0.04) 10 0.8 0.5 ,
则中位数在 (80,90)内,设为m,则 (m 80) 0.04 0.5 0.4 0.1 ,
解得m 82.5,即中位数为82.5.································································· 3 分
1 1
(2)因为成绩在[90,100]的频率为 ,所以概率为 ,
5 5
则 X ~ B(10, 1) 1 4,所以 P(X k) C k ( )k ( )10 k10 ,········································ 5 分5 5 5
k 1 k 4 10 k
P(X k) C10 ( ) ( )
所以 5 5 11 5k1 4 1 ,······································ 6 分P(X k 1) C k 1( )k 1( )11 k 4k10 5 5
当1 k 2时, P(X k) P(X k 1), P(X 0) P(X 1) P(X 2);
当 k 3时, P(X k) P(X k 1), P(X 2) P(X 3) ,
所以 k 2时, P(X k)取到最大值.····························································7 分
数学评分标准 第 3页(共 8页)
P C
3
4C
1
2 C
4
4 3 P C
3
3C
1
3 1(3)甲进入复赛的概率 1 ,乙进入复赛的概率 ,C4 2 46 5 C6 5
3 1
故甲、乙两人进入复赛的概率分别为 , .···················································· 8 分
5 5
2 4 8
由题意可得: 的可能取值为0,1,2,则有: P( 0) (1 P1)(1 P2) ,5 5 25
P( 1) P (1 P ) (1 P )P 3 4 2 1 14 P( 2) PP 3 1 3 1 2 1 2 , 1 2 ,5 5 5 5 25 5 5 25
所以 的分布列为:
0 1 2
8 14 3
P
25 25 25
················································································11 分
所以 E( ) 0 8 1 14 2 3 4 ························································ 12 分
25 25 25 5
21.(本小题满分 12分)
解: (1)记 | F1F2 | 2c,由题意知: | AF1 | | AF2 | a,2c 2a ······················ 1 分
1
所以 S 2 AF F a 1,解得a 2 ······························································· 2 分1 2 2
所以b 1,c 1 ···························································································· 3 分
x2
所以椭圆C的标准方程为: y2 1···························································· 4 分
2
(2)(ⅰ)选②③为条件:设 P(x1, y1) ,Q(x2 , y2 ),
当直线 l的斜率不存在时,根据椭圆的对称性不妨设点 P在第一象限,
则由 k k 1 k 21 2 ,可得2 1
,
2
2 2
此时直线WP的方程为 y x x,联立 y2 1,解得P(1, 2 )
2 2 2
S 2所以 ······························································································· 6 分
2
当直线 l的斜率存在时,设直线 l的方程为: y kx t,
则 k1k
y
1
y2 1
2 ,即 x1x2 2y1y2 0x1x2 2
2
将 y kx t x代入 y2 1得: (1 2k 2 )x2 4ktx 2t 2 2 0
2
4kt 2t 2 2
所以 x1 x2 1 2k 2
,x1x2 2 , ····························································7 分1 2k
数学评分标准 第 4页(共 8页)
2 2
所以 y 21y2 (kx1 t)(kx2 t) k x1x2 kt(x1 x2 ) t
2 t 2k
1 2k 2
2t 2 2 22 t 2k
2
所以 22 2 0,即1 2k 2t
2 ①··································· 8 分
1 2k 1 2k
2 2
| PQ | 1 2k t 1 k 2 | x1 x2 | 1 k
2 (x1 x )
2
2 4x1x2 2 2 1 k
2 2 ···· 10 分1 2k
因为点O到直线 l d | t |的距离
1 k 2
S 1 | t | 2 2 1 k 2 1 2k
2 t 2 2
所以
2 1 k 2 1 2k 2 2
综上,结论成立. ························································································12 分
(ⅱ)选①③为条件:设 P(x1, y1) ,Q(x2 , y2 ),
当直线 l的斜率不存在时,根据椭圆的对称性不妨设点 P在第一象限,
则由 S 2 S 1 x 2y x y 2 ,可得 1 1 1 1 ,2 2 2
x21 y2 1 2 1又 1 ,解得 P(1, ),Q(1,
2
) ,所以 k1k2 ·····························6 分2 2 2 2
当直线 l的斜率存在时,设直线 l的方程为: y kx t,
y kx t x
2
将 代入 y2 1得: (1 2k 2)x2 4ktx 2t 2 2 0
2
4kt 2t 2 2
所以 x1 x2 2 ,x1x2 2 , ····························································7 分1 2k 1 2k
1 2k 2 t 2| PQ | 1 k 2 | x1 x
2 2 2
2 | 1 k (x1 x2 ) 4x1x2 2 2 1 k 2 ······8 分1 2k
| t |
因为点O到直线 l的距离 d
1 k 2
1 | t | 1 2k 2 t 2 1 2k 2 t 2 2
所以 S 2 2 1 k 2 2 | t |
2 1 k 2 1 2k 2 1 2k 2 2
即1 2k 2 2t 2 ························································································ 10 分
y y 2 2 t
2 2k 2
因为 1 2 (kx1 t)(kx2 t) k x1x2 kt(x1 x2 ) t 1 2k 2
t 2 2k 2
y y 1 2k 2
2 2 2
所以 k k 1 2
t 2k 1 t 1
1 2 2 2 2 x1x2 2t 2 2t 2 2t 2 2
1 2k 2
综上,结论成立. ························································································12 分
数学评分标准 第 5页(共 8页)
(ⅲ)选①②为条件:设 P(x1, y1) ,Q(x2 , y2 ) ,W (x0 , y0 )
当直线 l的斜率不存在时,根据椭圆的对称性不妨设点 P在第一象限,
则Q(x1, y1),W (0,y0) ,
1 2 x2
所以 S x1 2y
2 2
1 x1 y1 ,又 1 y
2
1 1,解得 P(1, ),Q(1, )2 2 2 2 2
k k (y1 y0 )( y1 y0 ) y 2 1 1所以 1 2 ,所以 y 0x 01 x1 2 2
0
所以W (0,0) 为坐标原点,满足题意································································· 6 分
当直线 l的斜率存在时,设W (x0 ,kx0 ),直线 l的方程为: y kx t,
2
将 y kx t x 带入 y2 1得: (1 2k 2 )x2 4ktx 2t 2 2 0
2
x x 4kt ,x x 2t
2 2
所以 1 2 2 1 2 2 , ····························································7 分1 2k 1 2k
2 2
| PQ | 1 k 2 | x x | 1 k 2 (x x )2 4x x 2 2 1 k 2 1 2k t1 2 1 2 1 2 2 ······8 分1 2k
W l d | t |点 到直线 的距离
1 k 2
S 1 | t |
2
2 2 1 k 2 1 2k t
2 2
2 t 1 2k t
2 2
所以 2 2 2 1 k 2 1 2k 1 2k 2
即1 2k 2 2t 2 ························································································ 10 分
2
y y (kx t)(kx 2 2 t 2k
2
因为 1 2 1 2 t) k x1x2 kt(x1 x2 ) t 1 2k 2
y 2t1 y2 kx1 t kx2 t k (x1 x2 ) 2t 1 2k 2
则由 k k (y 1 kx0 )(y2 kx0 ) 11 2 ,即 (x1 x0 )(x2 x0 ) 2(y1 kx0 )(y2 kx0 ) 0(x1 x0 )(x2 x0 ) 2
得: x x 2 2 21 2 x0 (x1 x2 ) x0 2y1y2 2kx0 (y1 y2 ) 2k x0 0
即 (1 2k 2)2 x 20 (4k
2 4t 2 2) 0 ,因为1 2k 2 2t 2 , 4k 2 4t 2 2 0
所以 x0 0即W (0,0)
综上所述,W 满足条件. ··············································································12 分
数学评分标准 第 6页(共 8页)
22.(本小题满分 12分)
解:(1)曲线 y f (x)与圆C一条公切线的方程为 y x 1·································3 分
(2)(ⅰ)设曲线 y f (x)与圆C公切线 l的方程为 y kx m(显然, k存在)
1 1 1
因为 l与曲线 y f (x)相切,且 f (x) ,所以切点为 ( , ln ),
x k k
l : y ln 1 1 k(x ) ,所以 l : y kx 1 ln k ,即m 1 ln k
k k
| b m |
因为 l与圆C相切,所以 2 ,即 (b m)2 2k 2 2 0
1 k 2
所以 (b 1 ln k)2 2k 2 2 0
令 g(x) (b 1 ln x)2 2x2 2, x 0,
g (x) 2(b 1 ln x) 2[(b 1 ln x) 2x
2 ]
则 4x
x x
设 h(x) (b 1 ln x) 2x2 h (x) 1 4x (1 2x)(1 2x) ,则 ························ 5 分
x x
易证明: ln x x 1 ····················································································· 6 分
①当b 1时,因为 h(x) 在 (0, 1) 1 1上单调递增,在 ( , ) 上单调递减;所以 h(x) h( ) ,
2 2 2
1 1
因为 h( ) b ln 2 0 , h(e b 1) 2(e b 1)2 0 ,
2 2
h(2b) b 1 ln(2b) 8b 2 3b 8b 2 0 ;
所以存在 (e b 1, 1), (1 , 2b) ,使得 h( ) h( ) 0
2 2
所以b 1 ln 2 2 ,b 1 ln 2 2
所以 g(x)在 (0, )上单调递减,在 ( , ) 上单调递增,在 ( , )上单调递减;·· 7 分
因为 g( ) 4 4 2 2 2 0 ,且 g( ) g(1) (b 1) 2 4 0 ,
又因为 g(e 3b 1) 4b2 2(e 3b 1)2 2 0 ,
且 g(3b) [b 1 ln(3b)]2 18b 2 2 16b 2 18b 2 2 0 ,
所以存在 x (e 3b 11 , ), x2 ( , ), x3 ( ,3b) ,使得 g(x1) g(x2 ) g(x3) 0
所以当b 1时,曲线 y f (x)与圆C恰有三条公切线·································· 8 分
数学评分标准 第 7页(共 8页)
②当0 ln 2 1 b 1 1时,因为 h( ) 0,h(e b 1) 0, h(1) (b 1)2 4 0 ;
2 2
所以存在 (e b 1, 1), (1 ,1],使得h( ) h( ) 0
2 2
所以 g(x)在 (0, )上单调递减,在 ( , ) 上单调递增,在 ( , )上单调递减;
所以 g( ) 4 4 2 2 2 0 ,且 g( ) 4 4 2 2 2 0 ,
所以 g(x)不可能存在三个零点,
所以当 ln 2 1 b 1时,曲线 y f (x) 与圆C不可能有三条公切线··················9 分
2
③当b ln 2 1 1 时, h( ) 0 ;所以 h(x) 在 (0, )上单调递减,最多一个零点;
2 2
所以 g(x)最多一个极值点,不可能有三个零点;
1
所以当b ln 2 时,曲线 y f (x) 与圆C不可能有三条公切线···················· 10 分
2
综上,若曲线 y f (x) 与圆C恰有三条公切线,则b的取值范围为b 1.
(ⅱ)函数 g(x) (b 1 ln x)2 2x2 2的零点,
即方程 | b 1 ln x | 2x2 2 的解,
y2
即曲线 y | b 1 ln x |和曲线 y 2x2 2 ( x2 1(y 0))交点的横坐标,
2
结合图象,显然存在T (m,n),使得b 1 lnm n成立
所以 f (mx) f (x) lnm f (x) n 1 b对任意 x 0恒成立·······················12 分
数学评分标准 第 8页(共 8页)
转载请注明出处卷子答案网-一个不只有答案的网站 » 山东省青岛市2022-2023高三下学期第一次适应性检测(一模)数学试题(含答案)