黑龙江省哈尔滨市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
一.分式的化简求值(共3小题)
1.(2023 哈尔滨)先化简,再求代数式(﹣)÷的值,其中x=2cos45°﹣1.
2.(2022 哈尔滨)先化简,再求代数式(﹣)÷的值,其中x=2cos45°+1.
3.(2021 哈尔滨)先化简,再求代数式(﹣)÷的值,其中a=2sin45°﹣1.
二.一元一次不等式的应用(共3小题)
4.(2023 哈尔滨)佳衣服装厂给某中学用同样的布料生产A,B两种不同款式的服装,每套A款服装所用布料的米数相同,每套B款服装所用布料的米数相同.若1套A款服装和2套B款服装需用布料5米,3套A款服装和1套B款服装需用布料7米.
(1)求每套A款服装和每套B款服装需用布料各多少米;
(2)该中学需要A,B两款服装共100套,所用布料不超过168米,那么该服装厂最少需要生产多少套B款服装?
5.(2022 哈尔滨)绍云中学计划为绘画小组购买某种品牌的A、B两种型号的颜料,若购买1盒A种型号的颜料和2盒B种型号的颜料需用56元;若购买2盒A种型号的颜料和1盒B种型号的颜料需用64元.
(1)求每盒A种型号的颜料和每盒B种型号的颜料各多少元;
(2)绍云中学决定购买以上两种型号的颜料共200盒,总费用不超过3920元,那么该中学最多可以购买多少盒A种型号的颜料?
6.(2021 哈尔滨)君辉中学计划为书法小组购买某种品牌的A、B两种型号的毛笔.若购买3支A种型号的毛笔和1支B种型号的毛笔需用22元;若购买2支A种型号的毛笔和3支B种型号的毛笔需用24元.
(1)求每支A种型号的毛笔和每支B种型号的毛笔各多少元;
(2)君辉中学决定购买以上两种型号的毛笔共80支,总费用不超过420元,那么该中学最多可以购买多少支A种型号的毛笔?
三.正方形的性质(共1小题)
7.(2021 哈尔滨)已知四边形ABCD是正方形,点E在边DA的延长线上,连接CE交AB于点G,过点B作BM⊥CE,垂足为点M,BM的延长线交AD于点F,交CD的延长线于点H.
(1)如图1,求证:CE=BH;
(2)如图2,若AE=AB,连接CF,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形(△AEG除外),使写出的每个三角形都与△AEG全等.
四.作图-轴对称变换(共1小题)
8.(2022 哈尔滨)如图,方格纸中每个小正方形的边长均为1,△ABC的顶点和线段EF的端点均在小正方形的顶点上.
(1)在方格纸中画出△ADC,使△ADC与△ABC关于直线AC对称(点D在小正方形的顶点上);
(2)在方格纸中画出以线段EF为一边的平行四边形EFGH(点G,点H均在小正方形的顶点上),且平行四边形EFGH的面积为4,连接DH,请直接写出线段DH的长.
五.作图-平移变换(共1小题)
9.(2021 哈尔滨)如图,方格纸中每个小正方形的边长均为1个单位长度,△ABC的顶点和线段DE的端点均在小正方形的顶点上.
(1)在方格纸中将△ABC向上平移1个单位长度,再向右平移2个单位长度后得到△MNP(点A的对应点是点M,点B的对应点是点N,点C的对应点是点P),请画出△MNP;
(2)在方格纸中画出以DE为斜边的等腰直角三角形DEF(点F在小正方形的顶点上).连接FP,请直接写出线段FP的长.
六.条形统计图(共1小题)
10.(2022 哈尔滨)民海中学开展以“我最喜欢的健身活动”为主题的调查活动,围绕“在跑步类、球类、武术类、操舞类四类健身活动中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢操舞类的学生人数占所调查人数的25%.请你根据图中提供的信息解答下列问题:
(1)在这次调查中,一共抽取了多少名学生?
(2)请通过计算补全条形统计图;
(3)若民海中学共有1600名学生,请你估计该中学最喜欢球类的学生共有多少名.
黑龙江省哈尔滨市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
参考答案与试题解析
一.分式的化简求值(共3小题)
1.(2023 哈尔滨)先化简,再求代数式(﹣)÷的值,其中x=2cos45°﹣1.
【答案】,.
【解答】解:(﹣)÷
=
=
=
=,
∵x=2cos45°﹣1=,
∴原式=
=.
2.(2022 哈尔滨)先化简,再求代数式(﹣)÷的值,其中x=2cos45°+1.
【答案】,.
【解答】解:(﹣)÷
=
=
=,
当x=2cos45°+1=2×+1=+1时,原式==.
3.(2021 哈尔滨)先化简,再求代数式(﹣)÷的值,其中a=2sin45°﹣1.
【答案】,.
【解答】解:原式 ﹣
=﹣
=﹣
=
=
=,
当a=2sin45°﹣1=2×﹣1=﹣1时,
原式==.
二.一元一次不等式的应用(共3小题)
4.(2023 哈尔滨)佳衣服装厂给某中学用同样的布料生产A,B两种不同款式的服装,每套A款服装所用布料的米数相同,每套B款服装所用布料的米数相同.若1套A款服装和2套B款服装需用布料5米,3套A款服装和1套B款服装需用布料7米.
(1)求每套A款服装和每套B款服装需用布料各多少米;
(2)该中学需要A,B两款服装共100套,所用布料不超过168米,那么该服装厂最少需要生产多少套B款服装?
【答案】(1)每套A款服装需用布料1.8米,每套B款服装需用布料1.6米;
(2)该服装厂最少需要生产60套B款服装.
【解答】解:(1)设每套A款服装需用布料x米,每套B款服装需用布料y米,
根据题意得:,
解得:.
答:每套A款服装需用布料1.8米,每套B款服装需用布料1.6米;
(2)设该服装厂需要生产m套B款服装,则需要生产(100﹣m)套A款服装,
根据题意得:1.8(100﹣m)+1.6m≤168,
解得:m≥60,
∴m的最小值为60.
答:该服装厂最少需要生产60套B款服装.
5.(2022 哈尔滨)绍云中学计划为绘画小组购买某种品牌的A、B两种型号的颜料,若购买1盒A种型号的颜料和2盒B种型号的颜料需用56元;若购买2盒A种型号的颜料和1盒B种型号的颜料需用64元.
(1)求每盒A种型号的颜料和每盒B种型号的颜料各多少元;
(2)绍云中学决定购买以上两种型号的颜料共200盒,总费用不超过3920元,那么该中学最多可以购买多少盒A种型号的颜料?
【答案】(1)每盒A种型号的颜料24元,每盒B种型号的颜料16元;
(2)该中学最多可以购买90盒A种型号的颜料.
【解答】解:(1)设每盒A种型号的颜料x元,每盒B种型号的颜料y元,
依题意得:,
解得:.
答:每盒A种型号的颜料24元,每盒B种型号的颜料16元.
(2)设该中学可以购买m盒A种型号的颜料,则可以购买(200﹣m)盒B种型号的颜料,
依题意得:24m+16(200﹣m)≤3920,
解得:m≤90.
答:该中学最多可以购买90盒A种型号的颜料.
6.(2021 哈尔滨)君辉中学计划为书法小组购买某种品牌的A、B两种型号的毛笔.若购买3支A种型号的毛笔和1支B种型号的毛笔需用22元;若购买2支A种型号的毛笔和3支B种型号的毛笔需用24元.
(1)求每支A种型号的毛笔和每支B种型号的毛笔各多少元;
(2)君辉中学决定购买以上两种型号的毛笔共80支,总费用不超过420元,那么该中学最多可以购买多少支A种型号的毛笔?
【答案】(1)每支A种型号的毛笔6元,每支B种型号的毛笔4元;
(2)最多可以购买50支A种型号的毛笔
【解答】解:(1)设每支A种型号的毛笔x元,每支B种型号的毛笔y元;
由题意可得:,
解得:,
答:每支A种型号的毛笔6元,每支B种型号的毛笔4元;
(2)设A种型号的毛笔为a支,
由题意可得:6a+4(80﹣a)≤420,
解得:a≤50,
答:最多可以购买50支A种型号的毛笔.
三.正方形的性质(共1小题)
7.(2021 哈尔滨)已知四边形ABCD是正方形,点E在边DA的延长线上,连接CE交AB于点G,过点B作BM⊥CE,垂足为点M,BM的延长线交AD于点F,交CD的延长线于点H.
(1)如图1,求证:CE=BH;
(2)如图2,若AE=AB,连接CF,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形(△AEG除外),使写出的每个三角形都与△AEG全等.
【答案】见试题解答内容
【解答】证明:(1)∵四边形ABCD是正方形,
∴BC=CD=AD=AB,∠BCD=∠ADC=90°,
∵BM⊥CE,
∴∠HMC=∠ADC=90°,
∴∠H+∠HCM=90°=∠E+∠ECD,
∴∠H=∠E,
在△EDC和△HCB中,
,
∴△EDC≌△HCB(AAS),
∴CE=BH;
(2)△BCG,△DCF,△DHF,△ABF,
理由如下:∵AE=AB,
∴AE=BC=AD=CD,
∵△EDC≌△HCB,
∴ED=HC,
∵AD=CD,
∴AE=HD=BC=AB,
在△AEG和△BCG中,
,
∴△AEG≌△BCG(AAS),
∴AG=BG=AB,
同理可证△AFB≌△DFH,
∴AF=DF=AD,
∴AG=AF=DF,
在△AEG和△ABF中,
,
∴△AEG≌△ABF(SAS),
同理可证△AEG≌△DHF,△AEG≌△DCF.
四.作图-轴对称变换(共1小题)
8.(2022 哈尔滨)如图,方格纸中每个小正方形的边长均为1,△ABC的顶点和线段EF的端点均在小正方形的顶点上.
(1)在方格纸中画出△ADC,使△ADC与△ABC关于直线AC对称(点D在小正方形的顶点上);
(2)在方格纸中画出以线段EF为一边的平行四边形EFGH(点G,点H均在小正方形的顶点上),且平行四边形EFGH的面积为4,连接DH,请直接写出线段DH的长.
【答案】见试题解答内容
【解答】解:(1)如图,△ADC即为所求;
(2)如图, EFGH即为所求;
由勾股定理得,DH==5.
五.作图-平移变换(共1小题)
9.(2021 哈尔滨)如图,方格纸中每个小正方形的边长均为1个单位长度,△ABC的顶点和线段DE的端点均在小正方形的顶点上.
(1)在方格纸中将△ABC向上平移1个单位长度,再向右平移2个单位长度后得到△MNP(点A的对应点是点M,点B的对应点是点N,点C的对应点是点P),请画出△MNP;
(2)在方格纸中画出以DE为斜边的等腰直角三角形DEF(点F在小正方形的顶点上).连接FP,请直接写出线段FP的长.
【答案】(1)见解答;
(2)FP=.
【解答】解:(1)如图,△MNP为所作;
(2)如图,△DEF为所作;
FP==.
六.条形统计图(共1小题)
10.(2022 哈尔滨)民海中学开展以“我最喜欢的健身活动”为主题的调查活动,围绕“在跑步类、球类、武术类、操舞类四类健身活动中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢操舞类的学生人数占所调查人数的25%.请你根据图中提供的信息解答下列问题:
(1)在这次调查中,一共抽取了多少名学生?
(2)请通过计算补全条形统计图;
(3)若民海中学共有1600名学生,请你估计该中学最喜欢球类的学生共有多少名.
【答案】(1)80名;
(2)见解答;
(3)480名.
【解答】解:(1)20÷25%=80(名),
答:一共抽取了80名学生;
(2)80﹣16﹣24﹣20=20(名),
补全条形统计图如下:
(3)1600×=480(名),
答:估计该中学最喜欢球类的学生共有480名.
HYPERLINK "()
" ()
黑龙江省哈尔滨市2021-2023三年中考数学真题分类汇编-02填空题知识点分类
一.科学记数法—表示较大的数(共3小题)
1.(2023 哈尔滨)船闸是我国劳动人民智慧的结晶,三峡船闸的“人”字闸门是目前世界上最大的巨型闸门,重867000千克,用科学记数法表示为 千克.
2.(2022 哈尔滨)风能是一种清洁能源,我国风能储量很大,仅陆地上风能储量就有253000兆瓦,用科学记数法表示为 兆瓦.
3.(2021 哈尔滨)火星赤道半径约为3396000米,用科学记数法表示为 米.
二.提公因式法与公式法的综合运用(共3小题)
4.(2023 哈尔滨)把多项式xy2﹣16x分解因式的结果是 .
5.(2022 哈尔滨)把多项式xy2﹣9x分解因式的结果是 .
6.(2021 哈尔滨)把多项式a2b﹣25b分解因式的结果是 .
三.二次根式的加减法(共3小题)
7.(2023 哈尔滨)计算的结果是 .
8.(2022 哈尔滨)计算+3的结果是 .
9.(2021 哈尔滨)计算﹣2的结果是 .
四.解一元一次不等式组(共3小题)
10.(2023 哈尔滨)不等式组的解集是 .
11.(2022 哈尔滨)不等式组的解集是 .
12.(2021 哈尔滨)不等式组的解集是 .
五.函数自变量的取值范围(共3小题)
13.(2023 哈尔滨)在函数中,自变量x的取值范围是 .
14.(2022 哈尔滨)在函数y=中,自变量x的取值范围是 .
15.(2021 哈尔滨)在函数y=中,自变量x的取值范围是 .
六.反比例函数图象上点的坐标特征(共3小题)
16.(2023 哈尔滨)已知反比例函数的图象经过点(a,7),则a的值为 .
17.(2022 哈尔滨)已知反比例函数y=﹣的图象经过点(4,a),则a的值为 .
18.(2021 哈尔滨)已知反比例函数y=的图象经过点(2,﹣5),则k的值为 .
七.二次函数图象上点的坐标特征(共1小题)
19.(2023 哈尔滨)抛物线y=﹣(x+2)2+6与y轴的交点坐标是 .
八.二次函数的最值(共1小题)
20.(2021 哈尔滨)二次函数y=﹣3x2﹣2的最大值为 .
九.三角形内角和定理(共1小题)
21.(2022 哈尔滨)在△ABC中,AD为边BC上的高,∠ABC=30°,∠CAD=20°,则∠BAC是 度.
一十.平行四边形的性质(共1小题)
22.(2021 哈尔滨)四边形ABCD是平行四边形,AB=6,∠BAD的平分线交直线BC于点E,若CE=2,则 ABCD的周长为 .
一十一.菱形的性质(共1小题)
23.(2022 哈尔滨)如图,菱形ABCD的对角线AC,BD相交于点O,点E在OB上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为 .
一十二.矩形的性质(共2小题)
24.(2023 哈尔滨)矩形ABCD的对角线AC,BD相交于点O,点F在矩形ABCD边上,连接OF.若∠ADB=38°,∠BOF=30°,则∠AOF= .
25.(2021 哈尔滨)如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥BC,垂足为点E,过点A作AF⊥OB,垂足为点F.若BC=2AF,OD=6,则BE的长为 .
一十三.正方形的性质(共1小题)
26.(2023 哈尔滨)如图,在正方形ABCD中,点E在CD上,连接AE,BE,F为BE的中点,连接CF,若 CF=,=,则AE的长为 .
一十四.弧长的计算(共2小题)
27.(2023 哈尔滨)一个扇形的圆心角是150°,弧长是πcm,则扇形的半径是 cm.
28.(2021 哈尔滨)一个扇形的弧长是8π cm,圆心角是144°,则此扇形的半径是 cm.
一十五.扇形面积的计算(共1小题)
29.(2022 哈尔滨)一个扇形的面积为7πcm2,半径为6cm,则此扇形的圆心角是 度.
一十六.列表法与树状图法(共1小题)
30.(2022 哈尔滨)同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是 .
黑龙江省哈尔滨市2021-2023三年中考数学真题分类汇编-02填空题知识点分类
参考答案与试题解析
一.科学记数法—表示较大的数(共3小题)
1.(2023 哈尔滨)船闸是我国劳动人民智慧的结晶,三峡船闸的“人”字闸门是目前世界上最大的巨型闸门,重867000千克,用科学记数法表示为 8.67×105 千克.
【答案】8.67×105.
【解答】解:867000=8.67×105,
故答案为:8.67×105.
2.(2022 哈尔滨)风能是一种清洁能源,我国风能储量很大,仅陆地上风能储量就有253000兆瓦,用科学记数法表示为 2.53×105 兆瓦.
【答案】2.53×105.
【解答】解:数字253000用科学记数法可表示为2.53×105.
故答案为:2.53×105.
3.(2021 哈尔滨)火星赤道半径约为3396000米,用科学记数法表示为 3.396×106 米.
【答案】3.396×106.
【解答】解:3396000=3.396×106.
故答案为:3.396×106.
二.提公因式法与公式法的综合运用(共3小题)
4.(2023 哈尔滨)把多项式xy2﹣16x分解因式的结果是 x(y+4)(y﹣4) .
【答案】x(y+4)(y﹣4).
【解答】解:xy2﹣16x
=x(y2﹣16)
=x(y+4)(y﹣4),
故答案为:x(y+4)(y﹣4).
5.(2022 哈尔滨)把多项式xy2﹣9x分解因式的结果是 x(y+3)(y﹣3) .
【答案】x(y+3)(y﹣3).
【解答】解:xy2﹣9x
=x(y2﹣9)
=x(y+3)(y﹣3),
故答案为:x(y+3)(y﹣3).
6.(2021 哈尔滨)把多项式a2b﹣25b分解因式的结果是 b(a+5)(a﹣5) .
【答案】b(a+5)(a﹣5).
【解答】解:a2b﹣25b
=b(a2﹣25)
=b(a+5)(a﹣5).
故答案为:b(a+5)(a﹣5).
三.二次根式的加减法(共3小题)
7.(2023 哈尔滨)计算的结果是 2 .
【答案】2.
【解答】解:原式=3﹣
=2,
故答案为:2.
8.(2022 哈尔滨)计算+3的结果是 2 .
【答案】2.
【解答】解:原式=+3×
=
=2.
故答案为:2.
9.(2021 哈尔滨)计算﹣2的结果是 2 .
【答案】2.
【解答】解:原式=3﹣2×
=3﹣
=2.
故答案为:2.
四.解一元一次不等式组(共3小题)
10.(2023 哈尔滨)不等式组的解集是 x> .
【答案】x>.
【解答】解:,
由①得:x>,
由②得:x≥﹣,
则不等式组的解集为x>.
故答案为:x>.
11.(2022 哈尔滨)不等式组的解集是 x> .
【答案】x>.
【解答】解:解不等式3x+4≥0,得:x≥﹣,
解不等式4﹣2x<﹣1,得:x>,
则不等式组的解集为x>,
故答案为:x>.
12.(2021 哈尔滨)不等式组的解集是 x<3 .
【答案】x<3.
【解答】解:解不等式3x﹣7<2,得:x<3,
解不等式x﹣5≤10,得:x≤15,
则不等式组的解集为x<3,
故答案为:x<3.
五.函数自变量的取值范围(共3小题)
13.(2023 哈尔滨)在函数中,自变量x的取值范围是 x≠8 .
【答案】x≠8.
【解答】解:由题意得:x﹣8≠0,
解得:x≠8,
故答案为:x≠8.
14.(2022 哈尔滨)在函数y=中,自变量x的取值范围是 x≠﹣ .
【答案】x≠﹣.
【解答】解:由题意得:
5x+3≠0,
∴x≠﹣,
故答案为:x≠﹣.
15.(2021 哈尔滨)在函数y=中,自变量x的取值范围是 x≠ .
【答案】x≠.
【解答】解:7x﹣5≠0,x≠.
故答案为:x≠.
六.反比例函数图象上点的坐标特征(共3小题)
16.(2023 哈尔滨)已知反比例函数的图象经过点(a,7),则a的值为 2 .
【答案】2.
【解答】解:∵y=,即k=xy=14,
∴14=7a,
∴a=2.
故答案为:2.
17.(2022 哈尔滨)已知反比例函数y=﹣的图象经过点(4,a),则a的值为 ﹣ .
【答案】﹣.
【解答】解:点(4,a)代入反比例函数y=﹣得,a=﹣=﹣,
故答案为:﹣.
18.(2021 哈尔滨)已知反比例函数y=的图象经过点(2,﹣5),则k的值为 ﹣10 .
【答案】见试题解答内容
【解答】解:∵反比例函数y=的图象经过点(2,﹣5),
∴k=2×(﹣5)=﹣10,
故答案为:﹣10.
七.二次函数图象上点的坐标特征(共1小题)
19.(2023 哈尔滨)抛物线y=﹣(x+2)2+6与y轴的交点坐标是 (0,2) .
【答案】(0,2).
【解答】解:在抛物线y=﹣(x+2)2+6中,令x=0,
即y=﹣4+6=2,
则抛物线y=﹣(x+2)2+6与y轴的交点坐标是(0,2),
故答案为:(0,2).
八.二次函数的最值(共1小题)
20.(2021 哈尔滨)二次函数y=﹣3x2﹣2的最大值为 ﹣2 .
【答案】﹣2.
【解答】解:在二次函数y=﹣3x2﹣2中,
∵顶点坐标为(0,﹣2),
且a=﹣3<0,
∴抛物线开口向下,
∴二次函数y=﹣3x2﹣2的最大值为﹣2.
故答案为:﹣2.
九.三角形内角和定理(共1小题)
21.(2022 哈尔滨)在△ABC中,AD为边BC上的高,∠ABC=30°,∠CAD=20°,则∠BAC是 80或40 度.
【答案】80或40.
【解答】解:当△ABC为锐角三角形时,如图,
∠BAD=180°﹣∠B﹣∠ADB=180°﹣30°﹣90°=60°,
∠BAC=∠BAD+∠CAD=60°+20°=80°;
当△ABC为钝角三角形时,如图,
∠BAD=180°﹣∠B﹣∠ADB=180°﹣30°﹣90°=60°,
∠BAC=∠BAD﹣∠CAD=60°﹣20°=40°.
综上所述,∠BAC=80°或40°.
故答案为:80或40.
一十.平行四边形的性质(共1小题)
22.(2021 哈尔滨)四边形ABCD是平行四边形,AB=6,∠BAD的平分线交直线BC于点E,若CE=2,则 ABCD的周长为 20或28 .
【答案】20或28.
【解答】解:当E点在线段BC上时,如图:
∵四边形ABCD为平行四边形,
∴BC∥AD,
∴∠BEA=∠EAD,
∵AE平分∠BAD,
∴∠BAE=∠EAD,
∴∠BEA=∠BAE,
∴BE=AB,
∵AB=6,
∴BE=6,
∵CE=2,
∴BC=BE+CE=6+2=8,
∴平行四边形ABCD的周长为:2×(6+8)=28,
当E点在线段BC延长线上时,如图:
∵四边形ABCD为平行四边形,
∴BC∥AD,
∴∠BEA=∠EAD,
∵AE平分∠BAD,
∴∠BAE=∠EAD,
∴∠BEA=∠BAE,
∴BE=AB,
∵AB=6,
∴BE=6,
∵CE=2,
∴BC=BE﹣CE=6﹣2=4,
∴平行四边形ABCD的周长为:2×(6+4)=20,
综上,平行四边形ABCD的周长为20或28.
故答案为20或28.
一十一.菱形的性质(共1小题)
23.(2022 哈尔滨)如图,菱形ABCD的对角线AC,BD相交于点O,点E在OB上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为 2 .
【答案】见试题解答内容
【解答】解:∵四边形ABCD是菱形,
∴AC⊥BD,AO=CO=4,BO=DO,
∴AE===5,
∴BE=AE=5,
∴BO=8,
∴BC===4,
∵点F为CD的中点,BO=DO,
∴OF=BC=2,
故答案为:2.
一十二.矩形的性质(共2小题)
24.(2023 哈尔滨)矩形ABCD的对角线AC,BD相交于点O,点F在矩形ABCD边上,连接OF.若∠ADB=38°,∠BOF=30°,则∠AOF= 46°或106° .
【答案】46°或106°.
【解答】当F在AB上时,如图,
∵四边形ABCD是矩形,
∴OD=OA,
∠OAD=∠ODA=38°,
∴∠AOB=∠ADO+∠DAO=76°,
∵∠BOF=30°,
∴∠AOF=∠AOB﹣∠BOF=46°;
当F在BC上时,如图,
∵四边形ABCD是矩形,
∴OD=OA,
∠OAD=∠ODA=38°,
∴∠AOB=∠ADO+DAO=76°,
∵∠BOF=30°,
∴∠AOF=∠AOB+∠BOF=106°,
∴∠AOF=46°或106°.
故答案为:46°或106°.
25.(2021 哈尔滨)如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥BC,垂足为点E,过点A作AF⊥OB,垂足为点F.若BC=2AF,OD=6,则BE的长为 3 .
【答案】3.
【解答】解:∵四边形ABCD是矩形,
∴OA=OB=OC=OD,
∵OE⊥BC,
∴BE=CE,∠BOE=∠COE,
又∵BC=2AF,
∵AF=BE,
在Rt△AFO和Rt△BEO中,
,
∴Rt△AFO≌Rt△BEO(HL),
∴∠AOF=∠BOE,
∴∠AOF=∠BOE=∠COE,
又∵∠AOF+∠BOE+∠COE=180°,
∴∠BOE=60°,
∵OB=OD=6,
∴BE=OB sin60°=6×=3,
故答案为:3.
一十三.正方形的性质(共1小题)
26.(2023 哈尔滨)如图,在正方形ABCD中,点E在CD上,连接AE,BE,F为BE的中点,连接CF,若 CF=,=,则AE的长为 .
【答案】.
【解答】解:∵四边形ABCD是正方形,
∴∠BCD=90°,BC=DC=AD,
∵F为BE的中点,CF=,
∴BE=2CF=,
设DE=3x,EC=2x,则DC=BC=5x,
在Rt△BCE中,(5x)2+(2x)2=()2,
解得x=1或﹣1(舍去),
∴CE=2,DE=3,BC=AD=DC=5,
在Rt△ADE中,AE2=AD2+DE2,
即AE==.
故答案为:.
一十四.弧长的计算(共2小题)
27.(2023 哈尔滨)一个扇形的圆心角是150°,弧长是πcm,则扇形的半径是 3 cm.
【答案】3.
【解答】解:设扇形的半径是Rcm,
则=π,
解得:R=3,
∴扇形的半径是3cm.
故答案为:3.
28.(2021 哈尔滨)一个扇形的弧长是8π cm,圆心角是144°,则此扇形的半径是 10 cm.
【答案】10.
【解答】解:设扇形的半径为rcm,由题意得,
=8π,
解得r=10(cm),
故答案为:10.
一十五.扇形面积的计算(共1小题)
29.(2022 哈尔滨)一个扇形的面积为7πcm2,半径为6cm,则此扇形的圆心角是 70 度.
【答案】70.
【解答】解:设扇形的圆心角为n°,
则,
∴n=70,
故答案为:70.
一十六.列表法与树状图法(共1小题)
30.(2022 哈尔滨)同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是 .
【答案】.
【解答】解:画树状图如下:
共有4种等可能的结果,其中一枚硬币正面向上、一枚硬币反面向上的结果有2种,
∴一枚硬币正面向上、一枚硬币反面向上的概率为=,
故答案为:.
HYPERLINK "()
" ()
黑龙江省哈尔滨市2021-2023三年中考数学真题分类汇编-01选择题知识点分类
一.相反数(共1小题)
1.(2022 哈尔滨)的相反数是( )
A.6 B.﹣6 C. D.﹣
二.绝对值(共2小题)
2.(2023 哈尔滨)﹣的绝对值是( )
A. B.10 C.﹣ D.﹣10
3.(2021 哈尔滨)﹣的绝对值是( )
A.﹣7 B.7 C.﹣ D.
三.幂的乘方与积的乘方(共2小题)
4.(2023 哈尔滨)下列运算一定正确的是( )
A.(﹣ab)2=﹣a2b2 B.a3 a2=a6
C.(a3)4=a7 D.b2+b2=2b2
5.(2022 哈尔滨)下列运算一定正确的是( )
A.(a2b3)2=a4b6 B.3b2+b2=4b4
C.(a4)2=a6 D.a3 a3=a9
四.完全平方公式(共1小题)
6.(2021 哈尔滨)下列运算一定正确的是( )
A.a2 a=a3 B.(a3)2=a5
C.(a﹣1)2=a2﹣1 D.a5﹣a2=a3
五.由实际问题抽象出一元二次方程(共2小题)
7.(2023 哈尔滨)为了改善居民生活环境,云宁小区对一块矩形空地进行绿化,这块空地的长比宽多6米,面积为720平方米,设矩形空地的长为x米,根据题意,所列方程正确的是( )
A.x(x﹣6)=720 B.x(x+6)=720 C.x(x﹣6)=360 D.x(x+6)=360
8.(2022 哈尔滨)某种商品原来每件售价为150元,经过连续两次降价后,该种商品每件售价为96元,设平均每次降价的百分率为x,根据题意,所列方程正确的是( )
A.150(1﹣x2)=96 B.150(1﹣x)=96
C.150(1﹣x)2=96 D.150(1﹣2x)=96
六.解分式方程(共3小题)
9.(2023 哈尔滨)方程=的解为( )
A.x=1 B.x=﹣1 C.x=2 D.x=﹣2
10.(2022 哈尔滨)方程=的解为( )
A.x=3 B.x=﹣9 C.x=9 D.x=﹣3
11.(2021 哈尔滨)方程=的解为( )
A.x=5 B.x=3 C.x=1 D.x=2
七.函数的图象(共3小题)
12.(2023 哈尔滨)一条小船沿直线从A码头向B码头匀速前进,到达B码头后,停留一段时间,然后原路匀速返回A码头,在整个过程中,这条小船与B码头的距离s(单位:m)与所用时间t(单位:min)之间的关系如图所示,则这条小船从A码头到B码头的速度和从B码头返回A码头的速度分别为( )
A.15m/min,25m/min B.25m/min,15m/min
C.25m/min,30m/min D.30m/min,25m/min
13.(2022 哈尔滨)一辆汽车油箱中剩余的油量y(L)与已行驶的路程x(km)的对应关系如图所示.如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35L时,那么该汽车已行驶的路程为( )
A.150km B.165km C.125km D.350km
14.(2021 哈尔滨)周日,小辉从家步行到图书馆读书,读了一段时间后,小辉立刻按原路回家.在整个过程中,小辉离家的距离s(单位:m)与他所用的时间t(单位:min)之间的关系如图所示,则小辉从家去图书馆的速度和从图书馆回家的速度分别为( )
A.75m/min,90m/min B.80m/min,90m/min
C.75m/min,100m/min D.80m/min,100m/min
八.二次函数的性质(共1小题)
15.(2022 哈尔滨)抛物线y=2(x+9)2﹣3的顶点坐标是( )
A.(9,﹣3) B.(﹣9,﹣3) C.(9,3) D.(﹣9,3)
九.全等三角形的性质(共1小题)
16.(2021 哈尔滨)如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为( )
A.30° B.25° C.35° D.65°
一十.切线的性质(共3小题)
17.(2023 哈尔滨)如图,AB是⊙O的切线,A为切点,连接OA,点C在⊙O上,OC⊥OA,连接BC并延长,交⊙O于点D,连接OD,若∠B=65°,则∠DOC的度数为( )
A.45° B.50° C.65° D.75°
18.(2022 哈尔滨)如图,AD,BC是⊙O的直径,点P在BC的延长线上,PA与⊙O相切于点A,连接BD,若∠P=40°,则∠ADB的度数为( )
A.65° B.60° C.50° D.25°
19.(2021 哈尔滨)如图,AB是⊙O的直径,BC是⊙O的切线,点B为切点,若AB=8,tan∠BAC=,则BC的长为( )
A.8 B.7 C.10 D.6
一十一.中心对称图形(共3小题)
20.(2023 哈尔滨)下列图形中,既是轴对称图形,又是中心对称图形的是( )
A. B.
C. D.
21.(2022 哈尔滨)下列图形中既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
22.(2021 哈尔滨)下列图形中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
一十二.平行线分线段成比例(共1小题)
23.(2021 哈尔滨)如图,在△ABC中,DE∥BC,AD=2,BD=3,AC=10,则AE的长为( )
A.3 B.4 C.5 D.6
一十三.相似三角形的判定与性质(共2小题)
24.(2023 哈尔滨)如图,AC,BD相交于点O,AB∥DC,M是AB的中点,MN∥AC,交BD于点N,若DO:OB=1:2,AC=12,则MN的长为( )
A.2 B.4 C.6 D.8
25.(2022 哈尔滨)如图,AB∥CD,AC,BD相交于点E,AE=1,EC=2,DE=3,则BD的长为( )
A. B.4 C. D.6
一十四.简单组合体的三视图(共3小题)
26.(2023 哈尔滨)七个大小相同的正方体搭成的几何体如图所示,其俯视图是( )
A. B.
C. D.
27.(2022 哈尔滨)六个大小相同的正方体搭成的几何体如图所示,其左视图是( )
A. B.
C. D.
28.(2021 哈尔滨)八个大小相同的正方体搭成的几何体如图所示,其主视图是( )
A. B. C. D.
一十五.概率公式(共2小题)
29.(2023 哈尔滨)将10枚黑棋子、5枚白棋子装入一个不透明的空盒子里,这些棋子除颜色外无其他差别,从盒子中随机取出一枚棋子,则取出的棋子是黑棋子的概率是( )
A. B. C. D.
30.(2021 哈尔滨)一个不透明的袋子中装有12个小球,其中8个红球、4个黄球,这些小球除颜色外无其它差别,从袋子中随机摸出一个小球,则摸出的小球是红球的概率是( )
A. B. C. D.
黑龙江省哈尔滨市2021-2023三年中考数学真题分类汇编-01选择题知识点分类
参考答案与试题解析
一.相反数(共1小题)
1.(2022 哈尔滨)的相反数是( )
A.6 B.﹣6 C. D.﹣
【答案】D
【解答】解:的相反数是﹣,
故选:D.
二.绝对值(共2小题)
2.(2023 哈尔滨)﹣的绝对值是( )
A. B.10 C.﹣ D.﹣10
【答案】A
【解答】解:|﹣|=﹣(﹣)=,
故选:A.
3.(2021 哈尔滨)﹣的绝对值是( )
A.﹣7 B.7 C.﹣ D.
【答案】D
【解答】解:,
故选:D.
三.幂的乘方与积的乘方(共2小题)
4.(2023 哈尔滨)下列运算一定正确的是( )
A.(﹣ab)2=﹣a2b2 B.a3 a2=a6
C.(a3)4=a7 D.b2+b2=2b2
【答案】D
【解答】解:A、(﹣ab)2=a2b2,故A不符合题意;
B、a3 a2=a5,故B不符合题意;
C、(a3)4=a12,故C不符合题意;
D、b2+b2=2b2,故D符合题意;
故选:D.
5.(2022 哈尔滨)下列运算一定正确的是( )
A.(a2b3)2=a4b6 B.3b2+b2=4b4
C.(a4)2=a6 D.a3 a3=a9
【答案】A
【解答】解:A、(a2b3)2=a4b6,原计算正确,故此选项符合题意;
B、3b2+b2=4b2,原计算错误,故此选项不符合题意;
C、(a4)2=a8,原计算错误,故此选项不符合题意;
D、a3 a3=a6,原计算错误,故此选项不符合题意.
故选:A.
四.完全平方公式(共1小题)
6.(2021 哈尔滨)下列运算一定正确的是( )
A.a2 a=a3 B.(a3)2=a5
C.(a﹣1)2=a2﹣1 D.a5﹣a2=a3
【答案】A
【解答】解:A、a2 a=a3,原计算正确,故此选项符合题意;
B、(a2)3=a6,原计算错误,故此选项不符合题意;
C、(a﹣1)2=a2﹣2a+1,原计算错误,故此选项不符合题意;
D、a5与a2不是同类项,不能合并,原计算错误,故此选项不符合题意.
故选:A.
五.由实际问题抽象出一元二次方程(共2小题)
7.(2023 哈尔滨)为了改善居民生活环境,云宁小区对一块矩形空地进行绿化,这块空地的长比宽多6米,面积为720平方米,设矩形空地的长为x米,根据题意,所列方程正确的是( )
A.x(x﹣6)=720 B.x(x+6)=720 C.x(x﹣6)=360 D.x(x+6)=360
【答案】A
【解答】解:设矩形空地的长为x米,则设矩形空地的宽为(x﹣6)米,
由题意可得,x(x﹣6)=720,
故选:A.
8.(2022 哈尔滨)某种商品原来每件售价为150元,经过连续两次降价后,该种商品每件售价为96元,设平均每次降价的百分率为x,根据题意,所列方程正确的是( )
A.150(1﹣x2)=96 B.150(1﹣x)=96
C.150(1﹣x)2=96 D.150(1﹣2x)=96
【答案】C
【解答】解:第一次降价后的价格为150×(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为150×(1﹣x)×(1﹣x),
则列出的方程是150(1﹣x)2=96.
故选:C.
六.解分式方程(共3小题)
9.(2023 哈尔滨)方程=的解为( )
A.x=1 B.x=﹣1 C.x=2 D.x=﹣2
【答案】C
【解答】解:分式方程去分母得:2x+2=3x,
解得:x=2,
经检验x=2是分式方程的解.
故选:C.
10.(2022 哈尔滨)方程=的解为( )
A.x=3 B.x=﹣9 C.x=9 D.x=﹣3
【答案】C
【解答】解:=,
2x=3(x﹣3),
解得:x=9,
检验:当x=9时,x(x﹣3)≠0,
∴x=9是原方程的根,
故选:C.
11.(2021 哈尔滨)方程=的解为( )
A.x=5 B.x=3 C.x=1 D.x=2
【答案】A
【解答】解:去分母得:3x﹣1=2(2+x),
去括号得:3x﹣1=4+2x,
移项合并得:x=5,
检验:当x=5时,(2+x) (3x﹣1)≠0,
∴分式方程的解为x=5.
故选:A.
七.函数的图象(共3小题)
12.(2023 哈尔滨)一条小船沿直线从A码头向B码头匀速前进,到达B码头后,停留一段时间,然后原路匀速返回A码头,在整个过程中,这条小船与B码头的距离s(单位:m)与所用时间t(单位:min)之间的关系如图所示,则这条小船从A码头到B码头的速度和从B码头返回A码头的速度分别为( )
A.15m/min,25m/min B.25m/min,15m/min
C.25m/min,30m/min D.30m/min,25m/min
【答案】D
【解答】解:这条小船从A码头到B码头的速度为:1500÷50=30(m/min),
从B码头返回A码头的速度为:1500÷(160﹣100)=25(m/min).
故选:D.
13.(2022 哈尔滨)一辆汽车油箱中剩余的油量y(L)与已行驶的路程x(km)的对应关系如图所示.如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35L时,那么该汽车已行驶的路程为( )
A.150km B.165km C.125km D.350km
【答案】A
【解答】解:当油箱中剩余的油量为35L时,那么该汽车已行驶的路程为:(50﹣35)×(500÷50)=150(km),
故选:A.
14.(2021 哈尔滨)周日,小辉从家步行到图书馆读书,读了一段时间后,小辉立刻按原路回家.在整个过程中,小辉离家的距离s(单位:m)与他所用的时间t(单位:min)之间的关系如图所示,则小辉从家去图书馆的速度和从图书馆回家的速度分别为( )
A.75m/min,90m/min B.80m/min,90m/min
C.75m/min,100m/min D.80m/min,100m/min
【答案】C
【解答】解:由题意,得:
小辉从家去图书馆的速度为:1500÷20=75(m/min);
小辉从图书馆回家的速度为:1500÷(70﹣55)=100(m/min).
故选:C.
八.二次函数的性质(共1小题)
15.(2022 哈尔滨)抛物线y=2(x+9)2﹣3的顶点坐标是( )
A.(9,﹣3) B.(﹣9,﹣3) C.(9,3) D.(﹣9,3)
【答案】B
【解答】解:∵y=2(x+9)2﹣3,
∴抛物线顶点坐标为(﹣9,﹣3),
故选:B.
九.全等三角形的性质(共1小题)
16.(2021 哈尔滨)如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为( )
A.30° B.25° C.35° D.65°
【答案】B
【解答】解:∵△ABC≌△DEC,
∴∠ACB=∠DCE,
∵∠BCE=65°,
∴∠ACD=∠BCE=65°,
∵AF⊥CD,
∴∠AFC=90°,
∴∠CAF+∠ACD=90°,
∴∠CAF=90°﹣65°=25°,
故选:B.
一十.切线的性质(共3小题)
17.(2023 哈尔滨)如图,AB是⊙O的切线,A为切点,连接OA,点C在⊙O上,OC⊥OA,连接BC并延长,交⊙O于点D,连接OD,若∠B=65°,则∠DOC的度数为( )
A.45° B.50° C.65° D.75°
【答案】B
【解答】解:∵AB是⊙O的切线,A为切点,
∴OA⊥AB,
∵OC⊥OA,
∴AB∥OC,
∴∠OCD=∠B=65°,
∵OC=OD,
∴∠OCD=∠ODC=65°,
∴∠DOC=180°﹣65°﹣65°=50°,
故选:B.
18.(2022 哈尔滨)如图,AD,BC是⊙O的直径,点P在BC的延长线上,PA与⊙O相切于点A,连接BD,若∠P=40°,则∠ADB的度数为( )
A.65° B.60° C.50° D.25°
【答案】A
【解答】解:∵PA与⊙O相切于点A,∠P=40°,
∴∠OAP=90°,
∴∠BOD=∠AOP=90°﹣∠P=50°,
∵OB=OD,
∴∠ADB=∠OBD=(180°﹣∠BOD)÷2=(180°﹣50°)÷2=65°,
故选:A.
19.(2021 哈尔滨)如图,AB是⊙O的直径,BC是⊙O的切线,点B为切点,若AB=8,tan∠BAC=,则BC的长为( )
A.8 B.7 C.10 D.6
【答案】D
【解答】解:∵AB是⊙O的直径,BC是⊙O的切线,
∴AB⊥BC,
∴∠ABC=90°,
∵tan∠BAC==,
∴BC=×8=6.
故选:D.
一十一.中心对称图形(共3小题)
20.(2023 哈尔滨)下列图形中,既是轴对称图形,又是中心对称图形的是( )
A. B.
C. D.
【答案】A
【解答】解:A.本选项图形既是轴对称图形,又是中心对称图形,符合题意;
B.本选项图形是轴对称图形,不是中心对称图形,不符合题意;
C.本选项图形既不是轴对称图形,也不是中心对称图形,不符合题意;
D.本选项图形是中心对称图形,不是轴对称图形,不符合题意.
故选:A.
21.(2022 哈尔滨)下列图形中既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
【答案】B
【解答】解:A.不是中心对称图形,是轴对称图形,故此选项不合题意;
B.既是中心对称图形,也是轴对称图形,故此选项符合题意;
C.不是中心对称图形,是轴对称图形,故此选项不合题意;
D.不是中心对称图形,是轴对称图形,故此选项不合题意;
故选:B.
22.(2021 哈尔滨)下列图形中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【答案】A
【解答】解:A.既是轴对称图形,又是中心对称图形,故此选项符合题意;
B.是轴对称图形,不是中心对称图形,故此选项不合题意;
C.是轴对称图形,不是中心对称图形,故此选项不合题意;
D.是轴对称图形,不是中心对称图形,故此选项不合题意;
故选:A.
一十二.平行线分线段成比例(共1小题)
23.(2021 哈尔滨)如图,在△ABC中,DE∥BC,AD=2,BD=3,AC=10,则AE的长为( )
A.3 B.4 C.5 D.6
【答案】B
【解答】解:∵DE∥BC,
∴,
∵AD=2,BD=3,AC=10,
∴,
∴AE=4.
故选:B.
一十三.相似三角形的判定与性质(共2小题)
24.(2023 哈尔滨)如图,AC,BD相交于点O,AB∥DC,M是AB的中点,MN∥AC,交BD于点N,若DO:OB=1:2,AC=12,则MN的长为( )
A.2 B.4 C.6 D.8
【答案】B
【解答】解:∵AB∥DC,
∴△CDO∽△ABO,
∴,
∵DO:OB=1:2,
∴=,
∴OC=OA,
∵AC=OA+OC=12,
∴OA+OA=12,
∴OA=8,
∵MN∥AC,M是AB的中点,
∴MN为△AOB的中位线,
∴MN=OA==4.
故选:B.
25.(2022 哈尔滨)如图,AB∥CD,AC,BD相交于点E,AE=1,EC=2,DE=3,则BD的长为( )
A. B.4 C. D.6
【答案】C
【解答】解:∵AB∥CD,
∴△ABE∽△CDE,
∴=,即=,
∴BE=1.5,
∴BD=BE+DE=4.5.
故选:C.
一十四.简单组合体的三视图(共3小题)
26.(2023 哈尔滨)七个大小相同的正方体搭成的几何体如图所示,其俯视图是( )
A. B.
C. D.
【答案】C
【解答】解:观察几何体可知,该几何体的俯视图如下:
.
故选:C.
27.(2022 哈尔滨)六个大小相同的正方体搭成的几何体如图所示,其左视图是( )
A. B.
C. D.
【答案】D
【解答】解:由题意知,题中几何体的左视图为:
故选:D.
28.(2021 哈尔滨)八个大小相同的正方体搭成的几何体如图所示,其主视图是( )
A. B. C. D.
【答案】C
【解答】解:从正面看,共有三列,每列的小正方形个数分别为2、1、2,
故选:C.
一十五.概率公式(共2小题)
29.(2023 哈尔滨)将10枚黑棋子、5枚白棋子装入一个不透明的空盒子里,这些棋子除颜色外无其他差别,从盒子中随机取出一枚棋子,则取出的棋子是黑棋子的概率是( )
A. B. C. D.
【答案】D
【解答】解:从盒子中随机取出一枚棋子有15种等可能结果,其中取出的棋子是黑棋子的有10种结果,
所以其概率为=,
故选:D.
30.(2021 哈尔滨)一个不透明的袋子中装有12个小球,其中8个红球、4个黄球,这些小球除颜色外无其它差别,从袋子中随机摸出一个小球,则摸出的小球是红球的概率是( )
A. B. C. D.
【答案】D
【解答】解:∵从袋子中随机摸出一个小球共有12种等可能结果,摸出的小球是红球的结果数为8,
∴摸出的小球是红球的概率为=,
故选:D.
HYPERLINK "()
" ()
黑龙江省哈尔滨市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
一.二次函数综合题(共3小题)
1.(2022 哈尔滨)在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+b经过点A(,),点B(,﹣),与y轴交于点C.
(1)求a,b的值;
(2)如图1,点D在该抛物线上,点D的横坐标为﹣2.过点D向y轴作垂线,垂足为点E.点P为y轴负半轴上的一个动点,连接DP,设点P的纵坐标为t,△DEP的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);
(3)如图2,在(2)的条件下,连接OA,点F在OA上,过点F向y轴作垂线,垂足为点H,连接DF交y轴于点G,点G为DF的中点,过点A作y轴的平行线与过点P所作的x轴的平行线相交于点N,连接CN,PB,延长PB交AN于点M,点R在PM上,连接RN,若3CP=5GE,∠PMN+∠PDE=2∠CNR,求直线RN的解析式.
2.(2023 哈尔滨)在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+6与x轴交于点A(﹣6,0),B(8,0),与y轴交于点C.
(1)求a,b的值;
(2)如图①,E是第二象限抛物线上的一个动点,连接OE,CE,设点E的横坐标为t,△OCE的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);
(3)如图②,在(2)的条件下,当S=6时,连接BE交y轴于点R,点F在y轴负半轴上,连接BF,点D在BF上,连接ED,点L在线段RB上(点L不与点B重合),过点L作BR的垂线与过点B且平行于ED的直线交于点G,M为LG的延长线上一点,连接BM,EG,使∠GBM=∠BEG,P是x轴上一点,且在点B的右侧,∠PBM﹣∠GBM=∠FRB+∠DEG,过点M作MN⊥BG,交BG的延长线于点N,点V在BG上,连接MV,使BL﹣NV=BV,若∠EBF=∠VMN,求直线BF的解析式.
3.(2021 哈尔滨)在平面直角坐标系中,点O为坐标系的原点,抛物线y=ax2+bx经过A(10,0),B(,6)两点,直线y=2x﹣4与x轴交于点C,与y轴交于点D,点P为直线y=2x﹣4上的一个动点,连接PA.
(1)求抛物线的解析式;
(2)如图1,当点P在第一象限时,设点P的横坐标为t,△APC的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);
(3)如图2,在(2)的条件下,点E在y轴的正半轴上,且OE=OD,连接CE,当直线BP交x轴正半轴于点L,交y轴于点V时,过点P作PG∥CE交x轴于点G,过点G作y轴的平行线交线段VL于点F,连接CF,过点G作GQ∥CF交线段VL于点Q,∠CFG的平分线交x轴于点M,过点M作MH∥CF交FG于点H,过点H作HR⊥CF于点R,若FR+MH=GQ,求点P的坐标.
二.平行四边形的性质(共1小题)
4.(2023 哈尔滨)已知四边形ABCD是平行四边形,点E在对角线BD上,点F在边BC上,连接AE,EF,DE=BF,BE=BC.
(1)如图①,求证△AED≌△EFB;
(2)如图②,若AB=AD,AE≠ED,过点C作CH∥AE交BE于点H,在不添加任何辅助线的情况下,请直接写出图②中四个角(∠BAE除外),使写出的每个角都与∠BAE相等.
三.矩形的性质(共1小题)
5.(2022 哈尔滨)已知矩形ABCD的对角线AC,BD相交于点O,点E是边AD上一点,连接BE,CE,OE,且BE=CE.
(1)如图1,求证:△BEO≌△CEO;
(2)如图2,设BE与AC相交于点F,CE与BD相交于点H,过点D作AC的平行线交BE的延长线于点G,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形(△AEF除外),使写出的每个三角形的面积都与△AEF的面积相等.
四.圆的综合题(共3小题)
6.(2023 哈尔滨)已知△ABC内接于⊙O,AB为⊙O的直径,N为的中点,连接ON交AC于点H.
(1)如图①,求证:BC=2OH;
(2)如图②,点D在⊙O上,连接DB,DO,DC,DC交OH于点E,若DB=DC,求证OD∥AC;
(3)如图③,在(2)的条件下,点F在BD上,过点F作FG⊥DO,交DO于点G,DG=CH,过点F作FR⊥DE,垂足为R,连接EF,EA,EF:DF=3:2,点T在BC的延长线上,连接AT,过点T作TM⊥DC,交DC的延长线于点M,若FR=CM,AT=4,求AB的长.
7.(2022 哈尔滨)已知CH是⊙O的直径,点A、点B是⊙O上的两个点,连接OA,OB,点D,点E分别是半径OA,OB的中点,连接CD,CE,BH,且∠AOC=2∠CHB.
(1)如图1,求证:∠ODC=∠OEC;
(2)如图2,延长CE交BH于点F,若CD⊥OA,求证:FC=FH;
(3)如图3,在(2)的条件下,点G是一点,连接AG,BG,HG,OF,若AG:BG=5:3,HG=2,求OF的长.
8.(2021 哈尔滨)已知⊙O是△ABC的外接圆,AB为⊙O的直径,点N为AC的中点,连接ON并延长交⊙O于点E,连接BE,BE交AC于点D.
(1)如图1,求证:∠CDE+∠BAC=135°;
(2)如图2,过点D作DG⊥BE,DG交AB于点F,交⊙O于点G,连接OG,OD,若DG=BD,求证:OG∥AC;
(3)如图3,在(2)的条件下,连接AG,若DN=,求AG的长.
五.作图-平移变换(共1小题)
9.(2023 哈尔滨)如图,方格纸中每个小正方形的边长均为1个单位长度,线段AB和线段CD的端点均在小正方形的顶点上.
(1)在方格纸中画出△ABE,且AB=BE,∠ABE为钝角(点E在小正方形的顶点上);
(2)在方格纸中将线段CD向下平移2个单位长度,再向右平移1个单位长度后得到线段MN(点C的对应点是点M,点D的对应点是点N).连接EN,请直接写出线段EN的长.
六.条形统计图(共2小题)
10.(2023 哈尔滨)军乐中学开展以“我最喜欢的劳动实践课”为主题的调查活动,围绕“在园艺课、泥塑课、纺织课、烹饪课四门劳动实践课中,你最喜欢哪一门课?(必选且只选一门)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢泥塑课的学生人数占所调查人数的20%,请你根据图中提供的信息解答下列问题:
(1)在这次调查中,一共抽取了多少名学生?
(2)请通过计算补全条形统计图;
(3)若军乐中学共有1200名学生,请你估计该中学最喜欢烹饪课的学生共有多少名.
11.(2021 哈尔滨)春宁中学开展以“我最喜欢的冰雪运动项目”为主题的调查活动,围绕“在冰球、冰壶、短道速滑、高山滑雪四种冰雪运动项目中,你最喜欢哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢短道速滑的学生人数占所调查人数的40%.请你根据图中提供的信息解答下列问题:
(1)在这次调查中,一共抽取了多少名学生?
(2)请通过计算补全条形统计图;
(3)若春宁中学共有1500名学生,请你估计该中学最喜欢高山滑雪的学生共有多少名.
黑龙江省哈尔滨市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
参考答案与试题解析
一.二次函数综合题(共3小题)
1.(2022 哈尔滨)在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+b经过点A(,),点B(,﹣),与y轴交于点C.
(1)求a,b的值;
(2)如图1,点D在该抛物线上,点D的横坐标为﹣2.过点D向y轴作垂线,垂足为点E.点P为y轴负半轴上的一个动点,连接DP,设点P的纵坐标为t,△DEP的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);
(3)如图2,在(2)的条件下,连接OA,点F在OA上,过点F向y轴作垂线,垂足为点H,连接DF交y轴于点G,点G为DF的中点,过点A作y轴的平行线与过点P所作的x轴的平行线相交于点N,连接CN,PB,延长PB交AN于点M,点R在PM上,连接RN,若3CP=5GE,∠PMN+∠PDE=2∠CNR,求直线RN的解析式.
【答案】见试题解答内容
【解答】解:(1)∵抛物线y=ax2+b经过点A(,),点B(,﹣),
∴,
解得:,
故a=,b=;
(2)如图1,由(1)得:a=,b=,
∴抛物线的解析式为y=x2﹣,
∵点D在该抛物线上,点D的横坐标为﹣2,
∴y=×(﹣2)2﹣=,
∴D(﹣2,),
∵DE⊥y轴,
∴DE=2,
∴E(0,),
∵点P为y轴负半轴上的一个动点,且点P的纵坐标为t,
∴P(0,t),
∴PE=﹣t,
∴S=PE DE=×(﹣t)×2=﹣t+,
故S关于t的函数解析式为S=﹣t+;
(3)如图2,过点C作CK⊥CN,交NR的延长线于点K,过点K作KT⊥y轴于点T,
由(2)知:抛物线的解析式为y=x2﹣,
当x=0时,y=﹣,
∴C(0,﹣),
∴OC=,
∵FH⊥y轴,DE⊥y轴,
∴∠FHG=∠DEG=90°,
∵点G为DF的中点,
∴DG=FG,
∵∠HGF=∠EGD,
∴△FGH≌△DGE(AAS),
∴FH=DE=2,HG=EG=HE,
设直线OA的解析式为y=kx,
∵A(,),
∴k=,
解得:k=,
∴直线OA的解析式为y=x,
当x=2时,y=×2=,
∴F(2,),
∴H(0,),
∴HE=﹣=,
∴GE=HE=×=,
∵3CP=5GE,
∴CP=GE=×=,
∴P(0,﹣1),
∵AN∥y轴,PN∥x轴,
∴N(,﹣1),
∴PN=,
∵E(0,),
∴EP=﹣(﹣1)=,
设直线BP的解析式为y=mx+n,则,
解得:,
∴直线BP的解析式为y=x﹣1,
当x=时,y=×﹣1=,
∴M(,),
∴MN=﹣(﹣1)=,
∵==,==,
∴=,
又∵∠PNM=∠DEP=90°,
∴△PMN∽△DPE,
∴∠PMN=∠DPE,
∵∠DPE+∠PDE=90°,
∴∠PMN+∠PDE=90°,
∵∠PMN+∠PDE=2∠CNR,
∴∠CNR=45°,
∵CK⊥CN,
∴∠NCK=90°,
∴△CNK是等腰直角三角形,
∴CK=CN,
∵∠CTK=∠NPC=90°,
∴∠KCT+∠CKT=90°,
∵∠NCP+∠KCT=90°,
∴∠CKT=∠NCP,
∴△CKT≌△NCP(AAS),
∴CT=PN=,KT=CP=,
∴OT=CT﹣OC=﹣=2,
∴K(,2),
设直线RN的解析式为y=ex+f,把K(,2),N(,﹣1)代入,
得:,
解得:,
∴直线RN的解析式为y=﹣x+.
2.(2023 哈尔滨)在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+6与x轴交于点A(﹣6,0),B(8,0),与y轴交于点C.
(1)求a,b的值;
(2)如图①,E是第二象限抛物线上的一个动点,连接OE,CE,设点E的横坐标为t,△OCE的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);
(3)如图②,在(2)的条件下,当S=6时,连接BE交y轴于点R,点F在y轴负半轴上,连接BF,点D在BF上,连接ED,点L在线段RB上(点L不与点B重合),过点L作BR的垂线与过点B且平行于ED的直线交于点G,M为LG的延长线上一点,连接BM,EG,使∠GBM=∠BEG,P是x轴上一点,且在点B的右侧,∠PBM﹣∠GBM=∠FRB+∠DEG,过点M作MN⊥BG,交BG的延长线于点N,点V在BG上,连接MV,使BL﹣NV=BV,若∠EBF=∠VMN,求直线BF的解析式.
【答案】(1)a=﹣,b=;
(2)S=﹣3t;
(3)y=x﹣.
【解答】解:(1)将点A(﹣6,0),B(8,0)代入y=ax2+bx+6,
,
解得;
(2)由(1)可知抛物线的解析式为y=﹣x2+x+6,
当x=0时,y=6,
∴C(0,6),
∴OC=6,
∴S=(﹣t)×6=﹣3t;
(3)∵S=6,
∴﹣3t=6,
解得t=﹣2,
∴E(﹣2,5),
如图:以BM为一边作∠MBT=∠MBN,∠MBT的另一边BT交LM的延长线于点T,
∵ED∥BG,
∴∠DEB=∠EBG,
∵∠GEB=2∠GBM,
∴∠GEB=∠GBT,
∴∠DEB+∠GEB=∠EBG+∠GBT,
∴∠DEG=∠EBT,
∵∠PBM﹣∠GBM=∠FRB+∠DEG,∠PBM﹣∠GBM=∠TBP,∠ROB=90°,
∴∠TBP=90°﹣∠RBO+∠EBT,
∵∠RBO+∠EBT+∠TBP=180°,
∴∠EBT=60°,
∵LG⊥EB,
∴∠GLB=90°,
∴∠T=30°,
∴LB=BT,
作MK⊥BT,
∵MN⊥GB,
∴∠MKT=∠N=∠MKB=90°,
∵MB=MB,
∴△MNB≌△MKB(AAS),
∴NB=BK,MN=MK,
∵BL﹣NV=BV,
∴2BL﹣2NV=BV,
∴BT﹣NV=BV+NV=BN=BK,
∴BT﹣BK=NV=KT,
∴Rt△NMV≌Rt△KMT(HL),
∴∠T=∠NVM=30°,
∴∠NMV=60°,
∵∠EBF=∠VMN,
∴∠EBF=60°,
作FS⊥BE交于S点,作EQ⊥x轴交于Q点,
∴∠EQB=∠RSF=∠BSF=90°,
∵B(8,0),
∴OB=8,
∵E(﹣2,5),
∴EQ=5,QB=10,
∵tan∠EBQ==,
∴=,
解得OR=4,
∴BR==4,
∵tan∠FRB====,tan∠FBS=tan60°==,
∴设FS=2m,则RS=3m,BS=2m,
∴3m+2m=4,
解得m=,
∵RF==m=,
∴OF=,
∴F(0,﹣),
设直线BF的解析式为y=kx+c,
∴,
解得,
∴直线BF的解析式为y=x﹣.
3.(2021 哈尔滨)在平面直角坐标系中,点O为坐标系的原点,抛物线y=ax2+bx经过A(10,0),B(,6)两点,直线y=2x﹣4与x轴交于点C,与y轴交于点D,点P为直线y=2x﹣4上的一个动点,连接PA.
(1)求抛物线的解析式;
(2)如图1,当点P在第一象限时,设点P的横坐标为t,△APC的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);
(3)如图2,在(2)的条件下,点E在y轴的正半轴上,且OE=OD,连接CE,当直线BP交x轴正半轴于点L,交y轴于点V时,过点P作PG∥CE交x轴于点G,过点G作y轴的平行线交线段VL于点F,连接CF,过点G作GQ∥CF交线段VL于点Q,∠CFG的平分线交x轴于点M,过点M作MH∥CF交FG于点H,过点H作HR⊥CF于点R,若FR+MH=GQ,求点P的坐标.
【答案】(1)y=﹣x2+x.
(2)S=8t﹣16.
(3)P(,5).
【解答】解:(1)把A(10,0),B(,6)代入y=ax2+bx,得到,
解得,
∴抛物线的解析式为y=﹣x2+x.
(2)∵直线y=2x﹣4与x轴交于点C,与y轴交于点D,
∴C(2,0),D(0,﹣4),
∵A(10,0),
∴OA=10,OC=2,
∴AC=8,
由题意P(t,2t﹣4),
∴S= PT AC=×8×(2t﹣4)=8t﹣16.
(3)如图2中,过点P作PT⊥CG于T,交CF于W,过点F作FJ⊥MH交MH的延长线于J,连接JQ.
∵PT⊥CG,
∴∠PTC=∠ODC=90°,
∴OD∥PT,
∴∠ODC=∠CPT,
∴tan∠CPT=tan∠ODC===,
∵HR⊥RF,FJ⊥MJ,MH∥CF,
∴RH⊥MJ,
∴∠FRH=∠RHJ=∠FJH=90°,
∴四边形RFJH是矩形,
∴RF=HJ,
∵RF+HM=MH+HJ=MJ=GQ,MJ∥GQ,
∴四边形MJQG是平行四边形,
∴JQ=GM,∠JQG=∠GMJ,
∵MF平分∠CFG,
∴∠CFM=∠MFG,
∵CF∥MH,
∴∠FMH=∠CFM,
∴∠FMH=∠MFH,
∴FH=HM,
∵∠MGH=∠FJH=90°,∠MHG=∠FHJ,
∴△MHG≌△FHJ(AAS),
∴MG=FJ=JQ,∠GMH=∠HFJ,
∴∠JFQ=∠JQF,∠GFJ=∠GQJ,
∴∠GFQ=∠GQF,
∵CF∥GQ,PT∥FG,
∴∠WPF=∠GFQ,∠WFP=∠GQF,
∴∠WPF=∠WFP,
∴WP=WF,
∵D,E关于x轴对称,
∴∠ECO=∠DCO=∠PCG,
∵EC∥PG,
∴∠PGC=∠ECO,
∴∠PCG=∠PGC,
∴PC=PG,
∵PT⊥CG,
∴CT=TG,
∵WT∥FG,
∴CW=WF,
∴WP=WC=WF,
∴∠CPF=90°,
∴∠LCP+∠PLC=90°,
∵∠ODC+∠OCD=90°,∠OCD=∠LCP,
∴∠PLC=∠ODC,
∴tan∠PLC=tan∠ODC=,
∵B(,6),
∴OL=+12=,
∴L(,0),
∴直线PB的解析式为y=﹣x+,
由,解得,
∴P(,5).
二.平行四边形的性质(共1小题)
4.(2023 哈尔滨)已知四边形ABCD是平行四边形,点E在对角线BD上,点F在边BC上,连接AE,EF,DE=BF,BE=BC.
(1)如图①,求证△AED≌△EFB;
(2)如图②,若AB=AD,AE≠ED,过点C作CH∥AE交BE于点H,在不添加任何辅助线的情况下,请直接写出图②中四个角(∠BAE除外),使写出的每个角都与∠BAE相等.
【答案】(1)证明见解析;
(2)∠AEB,∠DHC,∠EFC,∠DCH.
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠ADE=∠EBF,
∵BC=BE,
∴AD=BE,
在△AED和△EFB中,
,
∴△AED≌△EFB(SAS);
(2)解:∵四边形ABCD是平行四边形,
∴AD=BC,AB∥CD,
∵AB=AD,
∴AB=BC,
∵BE=BC,
∴AB=BE,
∴∠BEA=∠BAE,
∵CH∥AE,
∴∠DHC=∠BEA,
∵AB∥CD,
∴∠CDH=∠ABE,
∴∠DCH=∠BAE,
∵△AED≌△EFB(SAS),
∴∠AED=∠EFB,
∴∠EFC=∠AEB,
∴与∠BAE相等角是∠AEB,∠DHC,∠EFC,∠DCH.
三.矩形的性质(共1小题)
5.(2022 哈尔滨)已知矩形ABCD的对角线AC,BD相交于点O,点E是边AD上一点,连接BE,CE,OE,且BE=CE.
(1)如图1,求证:△BEO≌△CEO;
(2)如图2,设BE与AC相交于点F,CE与BD相交于点H,过点D作AC的平行线交BE的延长线于点G,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形(△AEF除外),使写出的每个三角形的面积都与△AEF的面积相等.
【答案】见试题解答内容
【解答】(1)证明:∵四边形ABCD是矩形,
∴OA=OC=AC,OB=OD=BD,AC=BD,
∴OB=OC=OA=OD,
∵BE=CE,OE=OE,
∴△BEO≌△CEO(SSS);
(2)解:△DHE,△CHO,△DEG,△BFO都与△AEF的面积相等,
理由:∵四边形ABCD是矩形,
∴∠BAD=∠CDA=90°AB∥CD,AB=DC,
∵BE=CE,
∴Rt△BAE≌Rt△CDE(HL),
∴∠AEB=∠DEC,AE=DE,
∵OA=OD,
∴∠OEA=∠OED=90°,
∴∠BAD=∠OED=90°,∠ADC=∠AEO=90°,
∴AB∥OE,DC∥OE,
∴△AEO的面积=△BEO的面积,△DEO的面积=△COE的面积,
∴△AEO的面积﹣△EFO的面积=△BEO的面积﹣△EFO的面积,△DEO的面积﹣△EHO的面积=△COE的面积﹣△EHO的面积,
∴△AEF的面积=△BFO的面积,△DHE的面积=△CHO的面积,
∵OA=OD,
∴∠DAO=∠ADO,
∴△AEF≌△DEH(ASA),
∴△AEF的面积=△DHE的面积=△CHO的面积,
∵DG∥AC,
∴∠G=∠AFE,∠GDE=∠FAE,
∴△AEF≌△DEG(AAS),
∴△AEF的面积=△DEG的面积,
∴△DHE,△CHO,△DEG,△BFO都与△AEF的面积相等.
四.圆的综合题(共3小题)
6.(2023 哈尔滨)已知△ABC内接于⊙O,AB为⊙O的直径,N为的中点,连接ON交AC于点H.
(1)如图①,求证:BC=2OH;
(2)如图②,点D在⊙O上,连接DB,DO,DC,DC交OH于点E,若DB=DC,求证OD∥AC;
(3)如图③,在(2)的条件下,点F在BD上,过点F作FG⊥DO,交DO于点G,DG=CH,过点F作FR⊥DE,垂足为R,连接EF,EA,EF:DF=3:2,点T在BC的延长线上,连接AT,过点T作TM⊥DC,交DC的延长线于点M,若FR=CM,AT=4,求AB的长.
【答案】(1)见解析;
(2)见解析;
(3)2.
【解答】(1)证明:如图①,连接OC,
∵N是的中点,
∴=,
∴∠AON=∠CON,
∵OA=OC,
∴AH=HC,
∵OA=OB,
∴OH是△ABC的中位线,
∴BC=2OH;
(2)证明:如图②,设∠BDC=2α,
∵BD=CD,DO=DO,BO=OC,
∴△DOB≌△DOC(SSS),
∴∠BDO=∠CDO=∠BDC=α,
∵OB=OD,
∴∠DBO=∠BDO=α,
∵∠ACD=∠ABD=α,
∴∠CDO=∠ACD,
∴DO∥AC;
(3)解:如图③,连接AD,延长AE与BC交于W点,延长AC、TM交于L点,
∵FG⊥OD,
∴∠DGF=90°,
∵∠CHE=90°,
∴∠DGF=∠CHE,
∵∠FDG=∠ECH,DG=CH,
∴△DGF≌△CHE(AAS),
∴DF=CE,
∵AH=CH,
∴OH⊥AC,
∴∠EHC=∠DGF,
∵AH=HC,
∴△AEC是等腰三角形,
∴AE=EC,∠EAC=∠ECA,
∵∠BDO=∠ODE=∠ECA,
∴∠EAH=∠FDG,
∵DG=CH,
∴DG=AH,
∴△DFG≌△AFH(ASA),
∴AE=DF,
∵∠DEA=2∠ECA,∠FDE=2∠ODE,
∴∠FDE=∠DEA,
∴DF∥AE,
∴四边形AEFD是平行四边形,
∵AB是圆O的直径,
∴∠ADB=90°,
∴四边形ADFE是矩形,
∴EF⊥BD,
∵EF:DF=3:2,
∴tan∠EDF=,
∵FR⊥CD,FG⊥DO,
∴∠ODE=∠RFK=90°,
∵∠ECA=∠MCL,
∴∠RFK=∠LCM,
∵CM⊥MT,
∴∠CML=90°,
∵FR=CM,
∴△FRK≌△CML(AAS),
∴CL=FK=2FG,
∵BC=2OH,EH=OH,
∴EH是△AWC的中位线,
∴CW=2EH,
∵EH=FG,
∴CL=FK=2FG=CW,
∵∠TCL=∠CMT=90°,
∴∠MCL=∠CTM,
∵∠ACE=∠ECA=∠LCM,
∴∠CTM=∠WAC,
∴△AWC≌△TLC(AAS),
∴AC=TC,
在Rt△ACT中,AT=4,
∴AC=CT=4,
∵AW∥BD,
∴∠BAW=∠DBC,
∵∠DBO=∠BDO,∠EAC=∠BDO=∠ODE,
∴∠BAC=∠BDE,
在Rt△ABC中,tan∠BAC==,
∴BC=6,
在Rt△ABC中,AB==2.
7.(2022 哈尔滨)已知CH是⊙O的直径,点A、点B是⊙O上的两个点,连接OA,OB,点D,点E分别是半径OA,OB的中点,连接CD,CE,BH,且∠AOC=2∠CHB.
(1)如图1,求证:∠ODC=∠OEC;
(2)如图2,延长CE交BH于点F,若CD⊥OA,求证:FC=FH;
(3)如图3,在(2)的条件下,点G是一点,连接AG,BG,HG,OF,若AG:BG=5:3,HG=2,求OF的长.
【答案】见试题解答内容
【解答】(1)证明:如图1,∵点D,点E分别是半径OA,OB的中点,
∴OD=OA,OE=OB,
∵OA=OB,
∴OE=OD,
∵∠AOC=2∠CHB,∠BOC=2∠CHB,
∴∠AOC=∠BOC,
∵OC=OC,
∴△OCD≌△OCE(SAS),
∴∠ODC=∠OEC;
(2)证明:∵CD⊥OA,
∴∠CDO=90°,
由(1)知:∠ODC=∠OEC=90°,
∴sin∠OCE==,
∴∠OCE=30°,
∴∠COE=60°,
∵∠H=∠COE=30°,
∴∠H=∠OCE,
∴FC=FH;
(3)解:∵CO=OH,FC=FH,
∴FO⊥CH,
∴∠FOH=90°,
如图,连接AH,
∵∠AOC=∠BOC=60°,
∴∠AOH=∠BOH=120°,
∴AH=BH,∠AGH=60°,
∵AG:BG=5:3,
∴设AG=5x,BG=3x,
在AG上取点M,使得AM=BG,连接MH,过点H作HN⊥GM于N,
∵∠HAM=∠HBG,
∴△HAM≌△HBG(SAS),
∴MH=GH,
∴△MHG是等边三角形,
∴MG=HG=2,
∵AG=AM+MG,
∴5x=3x+2,
∴x=1,
∴AG=5,BG=AM=3,
∴MN=GM=×2=1,HN=,
∴AN=MN+AM=4,
∴HB=HA===,
∵∠FOH=90°,∠OHF=30°,
∴∠OFH=60°,
∵OB=OH,
∴∠BHO=∠OBH=30°,
∴∠FOB=∠OBF=30°,
∴OF=BF,
在Rt△OFH中,∠OHF=30°,
∴HF=2OF,
∴HB=BF+HF=3OF=,
∴OF=.
8.(2021 哈尔滨)已知⊙O是△ABC的外接圆,AB为⊙O的直径,点N为AC的中点,连接ON并延长交⊙O于点E,连接BE,BE交AC于点D.
(1)如图1,求证:∠CDE+∠BAC=135°;
(2)如图2,过点D作DG⊥BE,DG交AB于点F,交⊙O于点G,连接OG,OD,若DG=BD,求证:OG∥AC;
(3)如图3,在(2)的条件下,连接AG,若DN=,求AG的长.
【答案】(1)证明见解答;
(2)证明见解答;
(3)2.
【解答】(1)证明:如图1,过点O作OP⊥BC,交⊙O于点P,连接AP交BE于Q,
∴=,
∴∠BAP=∠CAP,
∵点N为AC的中点,
∴=,
∴∠ABE=∠CBE,
∵AB是⊙O的直径,
∴∠C=90°,
∴∠BAC+∠ABC=90°,
∴∠QAB+∠QBA=×90°=45°,
∴∠AQB=∠EQP=135°,
△AQD中,∠EQP=∠CAP+∠ADQ=135°,
∴∠CDE+∠BAC=135°;
(2)证明:在△DGO和△DBO中,
,
∴△DGO≌△DBO(SSS),
∴∠ABD=∠DGO,
∵DG⊥BE,
∴∠GDB=90°,
∴∠ADG+∠BDC=90°,
∵∠BDC+∠CBE=90°,
∴∠ADG=∠CBE=∠ABD=∠DGO,
∴OG∥AD;
(3)解:如图3,过点G作GK⊥AC于K,延长GO交BC于点H,
由(2)知:OG∥AC,
∴GH∥AC,
∴∠OHB=∠C=90°,
∴OH⊥BC,
∴BH=CH,
∵∠K=∠C=∠OHC=90°,
∴四边形GHCK是矩形,
∴CH=GK,
设GK=y,则BC=2y,ON=GK=y,
由(2)知:∠ADG=∠DBC,
在△GKD和△DCB中,
,
∴△GKD≌△DCB(AAS),
∴GK=DC=y,
∵OE∥BC,
∴∠E=∠DBC,
∴tan∠DBC=tanE,
∴,即=,
∴EN=,
∴AN=CN=y+,ON=y,
由勾股定理得:AO2=ON2+AN2,
∴(y+)2=y2+(y+)2,
解得:y1=﹣(舍),y2=,
∴AG===2.
五.作图-平移变换(共1小题)
9.(2023 哈尔滨)如图,方格纸中每个小正方形的边长均为1个单位长度,线段AB和线段CD的端点均在小正方形的顶点上.
(1)在方格纸中画出△ABE,且AB=BE,∠ABE为钝角(点E在小正方形的顶点上);
(2)在方格纸中将线段CD向下平移2个单位长度,再向右平移1个单位长度后得到线段MN(点C的对应点是点M,点D的对应点是点N).连接EN,请直接写出线段EN的长.
【答案】(1)作图见解析部分;
(2)作图见解析部分,.
【解答】解:(1)如图,△ABE即为所求;
(2)如图,线段MN即为所求,EN==.
六.条形统计图(共2小题)
10.(2023 哈尔滨)军乐中学开展以“我最喜欢的劳动实践课”为主题的调查活动,围绕“在园艺课、泥塑课、纺织课、烹饪课四门劳动实践课中,你最喜欢哪一门课?(必选且只选一门)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢泥塑课的学生人数占所调查人数的20%,请你根据图中提供的信息解答下列问题:
(1)在这次调查中,一共抽取了多少名学生?
(2)请通过计算补全条形统计图;
(3)若军乐中学共有1200名学生,请你估计该中学最喜欢烹饪课的学生共有多少名.
【答案】(1)50;
(2)见解析;
(3)480名.
【解答】解:(1)10÷20%=50(名),
答:在这次调查中,一共抽取了50名学生;
(2)喜欢纺织课的人数为:50﹣15﹣10﹣20=5(名),
补全条形统计图如下:
(3)1200×=480(名),
答:估计该中学最喜欢烹饪课的学生共有480名.
11.(2021 哈尔滨)春宁中学开展以“我最喜欢的冰雪运动项目”为主题的调查活动,围绕“在冰球、冰壶、短道速滑、高山滑雪四种冰雪运动项目中,你最喜欢哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢短道速滑的学生人数占所调查人数的40%.请你根据图中提供的信息解答下列问题:
(1)在这次调查中,一共抽取了多少名学生?
(2)请通过计算补全条形统计图;
(3)若春宁中学共有1500名学生,请你估计该中学最喜欢高山滑雪的学生共有多少名.
【答案】见试题解答内容
【解答】解:(1)本次调查共抽取的学生数有:24÷40%=60(名);
(2)最喜欢冰壶项目的人数有:60﹣16﹣24﹣12=8(名),补全统计图如下:
(3)根据题意得:
1500×=300(名),
答:估计该中学最喜欢高山滑雪的学生共有300名.
HYPERLINK "()
" ()
转载请注明出处卷子答案网-一个不只有答案的网站 » 黑龙江省哈尔滨市2021-2023三年中考数学真题分类汇编(含答案)