2023年高考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.定义在R上的偶函数f(x)满足f(x+2)=f(x),当x∈[﹣3,﹣2]时,f(x)=﹣x﹣2,则( )
A. B.f(sin3)<f(cos3)
C. D.f(2020)>f(2019)
2.已知曲线且过定点,若且,则的最小值为( ).
A. B.9 C.5 D.
3.已知函数,对任意的,,当时,,则下列判断正确的是( )
A. B.函数在上递增
C.函数的一条对称轴是 D.函数的一个对称中心是
4.对于函数,若满足,则称为函数的一对“线性对称点”.若实数与和与为函数的两对“线性对称点”,则的最大值为( )
A. B. C. D.
5.已知函数是奇函数,且,若对,恒成立,则的取值范围是( )
A. B. C. D.
6.已知m为实数,直线:,:,则“”是“”的( )
A.充要条件 B.充分不必要条件
C.必要不充分条件 D.既不充分也不必要条件
7.已知i为虚数单位,则( )
A. B. C. D.
8.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于( )cm3
A. B. C. D.
9.已知复数z=(1+2i)(1+ai)(a∈R),若z∈R,则实数a=( )
A. B. C.2 D.﹣2
10.已知角的顶点与原点重合,始边与轴的正半轴重合,终边经过点,则( )
A. B. C. D.
11.已知数列为等差数列,且,则的值为( )
A. B. C. D.
12.二项式的展开式中只有第六项的二项式系数最大,则展开式中的常数项是( )
A.180 B.90 C.45 D.360
二、填空题:本题共4小题,每小题5分,共20分。
13.已知函数,若,则___________.
14.的展开式中的常数项为_______.
15.已知双曲线的一条渐近线经过点,则该双曲线的离心率为_______.
16.如图,是圆的直径,弦的延长线相交于点垂直的延长线于点.求证:
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知,如图,曲线由曲线:和曲线:组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点.
(Ⅰ)若,求曲线的方程;
(Ⅱ)如图,作直线平行于曲线的渐近线,交曲线于点,求证:弦的中点必在曲线的另一条渐近线上;
(Ⅲ)对于(Ⅰ)中的曲线,若直线过点交曲线于点,求面积的最大值.
18.(12分)已知函数.
(1)若是函数的极值点,求的单调区间;
(2)当时,证明:
19.(12分)追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数(AQI)的检测数据,结果统计如表:
AQI
空气质量 优 良 轻度污染 中度污染 重度污染 重度污染
天数 6 14 18 27 25 10
(1)从空气质量指数属于[0,50],(50,100]的天数中任取3天,求这3天中空气质量至少有2天为优的概率;
(2)已知某企业每天因空气质量造成的经济损失y(单位:元)与空气质量指数x的关系式为,假设该企业所在地7月与8月每天空气质量为优、良、轻度污染、中度污染、重度污染、严重污染的概率分别为.9月每天的空气质量对应的概率以表中100天的空气质量的频率代替.
(i)记该企业9月每天因空气质量造成的经济损失为X元,求X的分布列;
(ii)试问该企业7月、8月、9月这三个月因空气质量造成的经济损失总额的数学期望是否会超过2.88万元?说明你的理由.
20.(12分)等差数列的前项和为,已知,.
(1)求数列的通项公式;
(2)设数列{}的前项和为,求使成立的的最小值.
21.(12分)某房地产开发商在其开发的某小区前修建了一个弓形景观湖.如图,该弓形所在的圆是以为直径的圆,且米,景观湖边界与平行且它们间的距离为米.开发商计划从点出发建一座景观桥(假定建成的景观桥的桥面与地面和水面均平行),桥面在湖面上的部分记作.设.
(1)用表示线段并确定的范围;
(2)为了使小区居民可以充分地欣赏湖景,所以要将的长度设计到最长,求的最大值.
22.(10分)如图,四棱锥V﹣ABCD中,底面ABCD是菱形,对角线AC与BD交于点O,VO⊥平面ABCD,E是棱VC的中点.
(1)求证:VA∥平面BDE;
(2)求证:平面VAC⊥平面BDE.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【解析】
根据函数的周期性以及x∈[﹣3,﹣2]的解析式,可作出函数f(x)在定义域上的图象,由此结合选项判断即可.
【详解】
由f(x+2)=f(x),得f(x)是周期函数且周期为2,
先作出f(x)在x∈[﹣3,﹣2]时的图象,然后根据周期为2依次平移,
并结合f(x)是偶函数作出f(x)在R上的图象如下,
选项A,,
所以,选项A错误;
选项B,因为,所以,
所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),选项B正确;
选项C,,
所以,即,
选项C错误;
选项D,,选项D错误.
故选:B.
【点睛】
本题考查函数性质的综合运用,考查函数值的大小比较,考查数形结合思想,属于中档题.
2、A
【解析】
根据指数型函数所过的定点,确定,再根据条件,利用基本不等式求的最小值.
【详解】
定点为,
,
当且仅当时等号成立,
即时取得最小值.
故选:A
【点睛】
本题考查指数型函数的性质,以及基本不等式求最值,意在考查转化与变形,基本计算能力,属于基础题型.
3、D
【解析】
利用辅助角公式将正弦函数化简,然后通过题目已知条件求出函数的周期,从而得到,即可求出解析式,然后利用函数的性质即可判断.
【详解】
,
又,即,
有且仅有满足条件;
又,则,
,函数,
对于A,,故A错误;
对于B,由,
解得,故B错误;
对于C,当时,,故C错误;
对于D,由,故D正确.
故选:D
【点睛】
本题考查了简单三角恒等变换以及三角函数的性质,熟记性质是解题的关键,属于基础题.
4、D
【解析】
根据已知有,可得,只需求出的最小值,根据
,利用基本不等式,得到的最小值,即可得出结论.
【详解】
依题意知,与为函数的“线性对称点”,
所以,
故(当且仅当时取等号).
又与为函数的“线性对称点,
所以,
所以,
从而的最大值为.
故选:D.
【点睛】
本题以新定义为背景,考查指数函数的运算和图像性质、基本不等式,理解新定义含义,正确求出的表达式是解题的关键,属于中档题.
5、A
【解析】
先根据函数奇偶性求得,利用导数判断函数单调性,利用函数单调性求解不等式即可.
【详解】
因为函数是奇函数,
所以函数是偶函数.
,
即,
又,
所以,.
函数的定义域为,所以,
则函数在上为单调递增函数.又在上,
,所以为偶函数,且在上单调递增.
由,
可得,对恒成立,
则,对恒成立,,
得,
所以的取值范围是.
故选:A.
【点睛】
本题考查利用函数单调性求解不等式,根据方程组法求函数解析式,利用导数判断函数单调性,属压轴题.
6、A
【解析】
根据直线平行的等价条件,求出m的值,结合充分条件和必要条件的定义进行判断即可.
【详解】
当m=1时,两直线方程分别为直线l1:x+y﹣1=0,l2:x+y﹣2=0满足l1∥l2,即充分性成立,
当m=0时,两直线方程分别为y﹣1=0,和﹣2x﹣2=0,不满足条件.
当m≠0时,则l1∥l2 ,
由得m2﹣3m+2=0得m=1或m=2,
由得m≠2,则m=1,
即“m=1”是“l1∥l2”的充要条件,
故答案为:A
【点睛】
(1)本题主要考查充要条件的判断,考查两直线平行的等价条件,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 本题也可以利用下面的结论解答,直线和直线平行,则且两直线不重合,求出参数的值后要代入检验看两直线是否重合.
7、A
【解析】
根据复数乘除运算法则,即可求解.
【详解】
.
故选:A.
【点睛】
本题考查复数代数运算,属于基础题题.
8、D
【解析】
解:根据几何体的三视图知,该几何体是三棱柱与半圆柱体的组合体,
结合图中数据,计算它的体积为:
V=V三棱柱+V半圆柱=×2×2×1+ π 12×1=(6+1.5π)cm1.
故答案为6+1.5π.
点睛:根据几何体的三视图知该几何体是三棱柱与半圆柱体的组合体,结合图中数据计算它的体积即可.
9、D
【解析】
化简z=(1+2i)(1+ai)=,再根据z∈R求解.
【详解】
因为z=(1+2i)(1+ai)=,
又因为z∈R,
所以,
解得a=-2.
故选:D
【点睛】
本题主要考查复数的运算及概念,还考查了运算求解的能力,属于基础题.
10、A
【解析】
由已知可得,根据二倍角公式即可求解.
【详解】
角的顶点与原点重合,始边与轴的正半轴重合,
终边经过点,则,
.
故选:A.
【点睛】
本题考查三角函数定义、二倍角公式,考查计算求解能力,属于基础题.
11、B
【解析】
由等差数列的性质和已知可得,即可得到,代入由诱导公式计算可得.
【详解】
解:由等差数列的性质可得,解得,
,
故选:B.
【点睛】
本题考查等差数列的下标和公式的应用,涉及三角函数求值,属于基础题.
12、A
【解析】
试题分析:因为的展开式中只有第六项的二项式系数最大,所以,,令,则,.
考点:1.二项式定理;2.组合数的计算.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【解析】
根据题意,利用函数奇偶性的定义判断函数的奇偶性,利用函数奇偶性的性质求解即可.
【详解】
因为函数,其定义域为,
所以其定义域关于原点对称,
又,
所以函数为奇函数,因为,
所以.
故答案为:
【点睛】
本题考查函数奇偶性的判断及其性质;考查运算求解能力;熟练掌握函数奇偶性的判断方法是求解本题的关键;属于中档题、常考题型.
14、
【解析】
写出展开式的通项公式,考虑当的指数为零时,对应的值即为常数项.
【详解】
的展开式通项公式为: ,
令,所以,所以常数项为.
故答案为:.
【点睛】
本题考查二项展开式中指定项系数的求解,难度较易.解答问题的关键是,能通过展开式通项公式分析常数项对应的取值.
15、
【解析】
根据双曲线方程,可得渐近线方程,结合题意可表示,再由双曲线a,b,c关系表示,最后结合双曲线离心率公式计算得答案.
【详解】
因为双曲线为,所以该双曲线的渐近线方程为.
又因为其一条渐近线经过点,即,则,
由此可得.
故答案为:.
【点睛】
本题考查由双曲线的渐近线构建方程表示系数关系进而求离心率,属于基础题.
16、证明见解析.
【解析】
试题分析:四点共圆,所以,又△∽△,所以,即,得证.
试题解析:
A.连接,因为为圆的直径,所以,
又,则四点共圆,
所以.
又△∽△,
所以,即,
∴.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(Ⅰ)和.;(Ⅱ)证明见解析;(Ⅲ).
【解析】
(Ⅰ)由,可得,解出即可;
(Ⅱ)设点,设直线,与椭圆方程联立可得:,利用,根与系数的关系、中点坐标公式,证明即可;
(Ⅲ)由(Ⅰ)知,曲线,且,设直线的方程为:,与椭圆方程联立可得: ,利用根与系数的关系、弦长公式、三角形的面釈计算公式、基本不等式的性质,即可求解.
【详解】
(Ⅰ)由题意:,
,解得,
则曲线的方程为:和.
(Ⅱ)证明:由题意曲线的渐近线为:,
设直线,
则联立,得,
,解得:,
又由数形结合知.
设点,
则,,
,,
,即点在直线上.
(Ⅲ)由(Ⅰ)知,曲线,点,
设直线的方程为:,
联立,得:,
,
设,
,,
,
面积,
令,,
当且仅当,即时等号成立,所以面积的最大值为.
【点睛】
本题考查了椭圆与双曲线的标准方程及其性质、直线与椭圆的相交问题、弦长公式、三角形的面积计算公式、基本不等式的性质,考查了推理论证能力与运算求解能力,属于难题.
18、(1)递减区间为(-1,0),递增区间为(2)见解析
【解析】
(1)根据函数解析式,先求得导函数,由是函数的极值点可求得参数.求得函数定义域,并根据导函数的符号即可判断单调区间.
(2)当时,.代入函数解析式放缩为,代入证明的不等式可化为,构造函数,并求得,由函数单调性及零点存在定理可知存在唯一的,使得成立,因而求得函数的最小值,由对数式变形化简可证明,即成立,原不等式得证.
【详解】
(1)函数
可求得,则
解得
所以,定义域为
,
在单调递增,而,
∴当时,,单调递减,
当时,,单调递增,
此时是函数的极小值点,
的递减区间为,递增区间为
(2)证明:当时,
,
因此要证当时,,
只需证明,
即
令,
则,
在是单调递增,
而,
∴存在唯一的,使得,
当,单调递减,当,单调递增,
因此当时,函数取得最小值,
,
,
故,
从而,即,结论成立.
【点睛】
本题考查了由函数极值求参数,并根据导数判断函数的单调区间,利用导数证明不等式恒成立,构造函数法的综合应用,属于难题.
19、(1);(2)(i)详见解析;(ii)会超过;详见解析
【解析】
(1)利用组合进行计算以及概率表示,可得结果.
(2)(i)写出X所有可能取值,并计算相对应的概率,列出表格可得结果.
(ii)由(i)的条件结合7月与8月空气质量所对应的概率,可得7月与8月经济损失的期望和,最后7月、8月、9月经济损失总额的数学期望与2.88万元比较,可得结果.
【详解】
(1)设ξ为选取的3天中空气质量为优的天数,
则P(ξ=2),P(ξ=3),
则这3天中空气质量至少有2天为优的概率
为;
(2)(i),
,
,
X的分布列如下:
X 0 220 1480
P
(ii)由(i)可得:
E(X)=02201480302(元),
故该企业9月的经济损失的数学期望为30E(X),
即30E(X)=9060元,
设7月、8月每天因空气质量造成的经济损失为Y元,
可得:,
,,
E(Y)=02201480320(元),
所以该企业7月、8月这两个月因空气质量造成
经济损失总额的数学期望为320×(31+31)=19840(元),
由19840+9060=28900>28800,
即7月、8月、9月这三个月因空气质量造成
经济损失总额的数学期望会超过2.88万元.
【点睛】
本题考查概率中的分布列以及数学期望,属基础题。
20、(1);(2)的最小值为19.
【解析】
(1)根据条件列方程组求出首项、公差,即可写出等差数列的通项公式;
(2)根据等差数列前n项和化简,利用裂项相消法求和,解不等式即可求解.
【详解】
(1)等差数列的公差设为,,,
可得,,
解得,,
则;
(2),
,
前n项和为
,
即,
可得,即,
则的最小值为19.
【点睛】
本题主要考查了等差数列的通项公式,等差数列的前n项和,裂项相消法求和,属于中档题
21、(1),;(2)米.
【解析】
(1) 过点作于点再在中利用正弦定理求解,再根据求解,进而求得.再根据确定的范围即可.
(2)根据(1)有,再设,求导分析函数的单调性与最值即可.
【详解】
解:
过点作于点
则,
在中,,
,
由正弦定理得:,
,
,
,
,因为,
化简得
,
令,,且,
因为,故
令
即,
记,
当时,单调递增;
当时,单调递减,
又,
当时,取最大值,
此时,
的最大值为米.
【点睛】
本题主要考查了三角函数在实际中的应用,需要根据题意建立角度与长度间的关系,进而求导分析函数的单调性,根据三角函数值求解对应的最值即可.属于难题.
22、(1)见解析(2)见解析
【解析】
(1)连结OE,证明VA∥OE得到答案.
(2)证明VO⊥BD,BD⊥AC,得到BD⊥平面VAC,得到证明.
【详解】
(1)连结OE.因为底面ABCD是菱形,所以O为AC的中点,
又因为E是棱VC的中点,所以VA∥OE,又因为OE 平面BDE,VA 平面BDE,
所以VA∥平面BDE;
(2)因为VO⊥平面ABCD,又BD 平面ABCD,所以VO⊥BD,
因为底面ABCD是菱形,所以BD⊥AC,又VO∩AC=O,VO,AC 平面VAC,
所以BD⊥平面VAC.又因为BD 平面BDE,所以平面VAC⊥平面BDE.
【点睛】
本题考查了线面平行,面面垂直,意在考查学生的推断能力和空间想象能力.