试卷答案
寻你做寻,想你所想

江苏省常州市武进区2023届高三最后一卷数学试卷(含解析)

2023年高考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知命题p:直线a∥b,且b 平面α,则a∥α;命题q:直线l⊥平面α,任意直线m α,则l⊥m.下列命题为真命题的是( )
A.p∧q B.p∨(非q) C.(非p)∧q D.p∧(非q)
2.已知函数满足,当时,,则( )
A.或 B.或
C.或 D.或
3.博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P1,P2,则( )
A.P1 P2= B.P1=P2= C.P1+P2= D.P1<P2
4.函数的图像大致为( )
A. B.
C. D.
5.根据最小二乘法由一组样本点(其中),求得的回归方程是,则下列说法正确的是( )
A.至少有一个样本点落在回归直线上
B.若所有样本点都在回归直线上,则变量同的相关系数为1
C.对所有的解释变量(),的值一定与有误差
D.若回归直线的斜率,则变量x与y正相关
6.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的,且球的表面积也是圆柱表面积的”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为,则该圆柱的内切球体积为( )
A. B. C. D.
7.已知非零向量、,若且,则向量在向量方向上的投影为( )
A. B. C. D.
8.若为过椭圆中心的弦,为椭圆的焦点,则△面积的最大值为( )
A.20 B.30 C.50 D.60
9.某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为,设地球半径为,该卫星近地点离地面的距离为,则该卫星远地点离地面的距离为( )
A. B.
C. D.
10.己知抛物线的焦点为,准线为,点分别在抛物线上,且,直线交于点,,垂足为,若的面积为,则到的距离为( )
A. B. C.8 D.6
11.已知双曲线的一条渐近线与直线垂直,则双曲线的离心率等于( )
A. B. C. D.
12.已知抛物线经过点,焦点为,则直线的斜率为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.若复数(是虚数单位),则________
14.在三棱锥中,已知,且平面平面,则三棱锥外接球的表面积为______.
15.某中学高一年级有学生1200人,高二年级有学生900人,高三年级有学生1500人,现按年级用分层抽样的方法从这三个年级的学生中抽取一个容量为720的样本进行某项研究,则应从高三年级学生中抽取_____人.
16.角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点,则的值是 .
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数,其中e为自然对数的底数.
(1)讨论函数的单调性;
(2)用表示中较大者,记函数.若函数在上恰有2个零点,求实数a的取值范围.
18.(12分)己知圆F1:(x+1)1 +y1= r1(1≤r≤3),圆F1:(x-1)1+y1= (4-r)1.
(1)证明:圆F1与圆F1有公共点,并求公共点的轨迹E的方程;
(1)已知点Q(m,0)(m<0),过点E斜率为k(k≠0)的直线与(Ⅰ)中轨迹E相交于M,N两点,记直线QM的斜率为k1,直线QN的斜率为k1,是否存在实数m使得k(k1+k1)为定值?若存在,求出m的值,若不存在,说明理由.
19.(12分)某芯片公司为制定下一年的研发投入计划,需了解年研发资金投入量(单位:亿元)对年销售额(单位:亿元)的影响.该公司对历史数据进行对比分析,建立了两个函数模型:①,②,其中均为常数,为自然对数的底数.
现该公司收集了近12年的年研发资金投入量和年销售额的数据,,并对这些数据作了初步处理,得到了右侧的散点图及一些统计量的值.令,经计算得如下数据:
(1)设和的相关系数为,和的相关系数为,请从相关系数的角度,选择一个拟合程度更好的模型;
(2)(i)根据(1)的选择及表中数据,建立关于的回归方程(系数精确到0.01);
(ii)若下一年销售额需达到90亿元,预测下一年的研发资金投入量是多少亿元?
附:①相关系数,回归直线中斜率和截距的最小二乘估计公式分别为:,;
② 参考数据:,,.
20.(12分)我国在贵州省平塘县境内修建的500米口径球面射电望远镜(FAST)是目前世界上最大单口径射电望远镜.使用三年来,已发现132颗优质的脉冲星候选体,其中有93颗已被确认为新发现的脉冲星,脉冲星是上世纪60年代天文学的四大发现之一,脉冲星就是正在快速自转的中子星,每一颗脉冲星每两脉冲间隔时间(脉冲星的自转周期)是-定的,最小小到0.0014秒,最长的也不过11.765735秒.某-天文研究机构观测并统计了93颗已被确认为新发现的脉冲星的自转周期,绘制了如图的频率分布直方图.
(1)在93颗新发现的脉冲星中,自转周期在2至10秒的大约有多少颗?
(2)根据频率分布直方图,求新发现脉冲星自转周期的平均值.
21.(12分)已知数列的前项和为,.
(1)求数列的通项公式;
(2)若,为数列的前项和.求证:.
22.(10分)在三角形中,角,,的对边分别为,,,若.
(Ⅰ)求角;
(Ⅱ)若,,求.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【解析】
首先判断出为假命题、为真命题,然后结合含有简单逻辑联结词命题的真假性,判断出正确选项.
【详解】
根据线面平行的判定,我们易得命题若直线,直线平面,则直线平面或直线在平面内,命题为假命题;
根据线面垂直的定义,我们易得命题若直线平面,则若直线与平面内的任意直线都垂直,命题为真命题.
故:A命题“”为假命题;B命题“”为假命题;C命题“”为真命题;D命题“”为假命题.
故选:C.
【点睛】
本小题主要考查线面平行与垂直有关命题真假性的判断,考查含有简单逻辑联结词的命题的真假性判断,属于基础题.
2、C
【解析】
简单判断可知函数关于对称,然后根据函数的单调性,并计算,结合对称性,可得结果.
【详解】
由,
可知函数关于对称
当时,,
可知在单调递增

又函数关于对称,所以
且在单调递减,
所以或,故或
所以或
故选:C
【点睛】
本题考查函数的对称性以及单调性求解不等式,抽象函数给出式子的意义,比如:,,考验分析能力,属中档题.
3、C
【解析】
将三辆车的出车可能顺序一一列出,找出符合条件的即可.
【详解】
三辆车的出车顺序可能为:123、132、213、231、312、321
方案一坐车可能:132、213、231,所以,P1=;
方案二坐车可能:312、321,所以,P1=;
所以P1+P2=
故选C.
【点睛】
本题考查了古典概型的概率的求法,常用列举法得到各种情况下基本事件的个数,属于基础题.
4、A
【解析】
根据排除,,利用极限思想进行排除即可.
【详解】
解:函数的定义域为,恒成立,排除,,
当时,,当,,排除,
故选:.
【点睛】
本题主要考查函数图象的识别和判断,利用函数值的符号以及极限思想是解决本题的关键,属于基础题.
5、D
【解析】
对每一个选项逐一分析判断得解.
【详解】
回归直线必过样本数据中心点,但样本点可能全部不在回归直线上﹐故A错误;
所有样本点都在回归直线上,则变量间的相关系数为,故B错误;
若所有的样本点都在回归直线上,则的值与相等,故C错误;
相关系数r与符号相同,若回归直线的斜率,则,样本点分布应从左到右是上升的,则变量x与y正相关,故D正确.
故选D.
【点睛】
本题主要考查线性回归方程的性质,意在考查学生对该知识的理解掌握水平和分析推理能力.
6、D
【解析】
设圆柱的底面半径为,则其母线长为,由圆柱的表面积求出,代入圆柱的体积公式求出其体积,结合题中的结论即可求出该圆柱的内切球体积.
【详解】
设圆柱的底面半径为,则其母线长为,
因为圆柱的表面积公式为,
所以,解得,
因为圆柱的体积公式为,
所以,
由题知,圆柱内切球的体积是圆柱体积的,
所以所求圆柱内切球的体积为
.
故选:D
【点睛】
本题考查圆柱的轴截面及表面积和体积公式;考查运算求解能力;熟练掌握圆柱的表面积和体积公式是求解本题的关键;属于中档题.
7、D
【解析】
设非零向量与的夹角为,在等式两边平方,求出的值,进而可求得向量在向量方向上的投影为,即可得解.
【详解】
,由得,整理得,
,解得,
因此,向量在向量方向上的投影为.
故选:D.
【点睛】
本题考查向量投影的计算,同时也考查利用向量的模计算向量的夹角,考查计算能力,属于基础题.
8、D
【解析】
先设A点的坐标为,根据对称性可得,在表示出面积,由图象遏制,当点A在椭圆的顶点时,此时面积最大,再结合椭圆的标准方程,即可求解.
【详解】
由题意,设A点的坐标为,根据对称性可得,
则的面积为,
当最大时,的面积最大,
由图象可知,当点A在椭圆的上下顶点时,此时的面积最大,
又由,可得椭圆的上下顶点坐标为,
所以的面积的最大值为.
故选:D.
【点睛】
本题主要考查了椭圆的标准方程及简单的几何性质,以及三角形面积公式的应用,着重考查了数形结合思想,以及化归与转化思想的应用.
9、A
【解析】
由题意画出图形,结合椭圆的定义,结合椭圆的离心率,求出椭圆的长半轴a,半焦距c,即可确定该卫星远地点离地面的距离.
【详解】
椭圆的离心率:,( c为半焦距; a为长半轴),
设卫星近地点,远地点离地面距离分别为r,n,如图:

所以,,
故选:A
【点睛】
本题主要考查了椭圆的离心率的求法,注意半焦距与长半轴的求法,是解题的关键,属于中档题.
10、D
【解析】
作,垂足为,过点N作,垂足为G,设,则,结合图形可得,,从而可求出,进而可求得,,由的面积即可求出,再结合为线段的中点,即可求出到的距离.
【详解】
如图所示,
作,垂足为,设,由,得,则,.
过点N作,垂足为G,则,,
所以在中,,,所以,
所以,在中,,所以,
所以,,
所以 .解得,
因为,所以为线段的中点,
所以F到l的距离为.
故选:D
【点睛】
本题主要考查抛物线的几何性质及平面几何的有关知识,属于中档题.
11、B
【解析】
由于直线的斜率k,所以一条渐近线的斜率为,即,所以,选B.
12、A
【解析】
先求出,再求焦点坐标,最后求的斜率
【详解】
解:抛物线经过点
,,
,,
故选:A
【点睛】
考查抛物线的基础知识及斜率的运算公式,基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【解析】
直接根据复数的代数形式四则运算法则计算即可.
【详解】
,.
【点睛】
本题主要考查复数的代数形式四则运算法则的应用.
14、
【解析】
取的中点,设等边三角形的中心为,连接.根据等边三角形的性质可求得,, 由等腰直角三角形的性质,得,根据面面垂直的性质得平面,,由勾股定理求得,可得为三棱锥外接球的球心,根据球体的表面积公式可求得此外接球的表面积.
【详解】
在等边三角形中,取的中点,设等边三角形的中心为,
连接.由,得,,
由已知可得是以为斜边的等腰直角三角形,,
又由已知可得平面平面,平面,,
,所以,为三棱锥外接球的球心,外接球半径,
三棱锥外接球的表面积为.
故答案为:
【点睛】
本题考查三棱锥的外接球的表面积,关键在于根据三棱锥的面的关系、棱的关系和长度求得外接球的球心的位置,球的半径,属于中档题.
15、1.
【解析】
先求得高三学生占的比例,再利用分层抽样的定义和方法,即可求解.
【详解】
由题意,高三学生占的比例为,
所以应从高三年级学生中抽取的人数为.
【点睛】
本题主要考查了分层抽样的定义和方法,其中解答中熟记分层抽样的定义和抽取的方法是解答的关键,着重考查了运算与求解能力,属于基础题.
16、
【解析】
试题分析:由三角函数定义知,又由诱导公式知,所以答案应填:.
考点:1、三角函数定义;2、诱导公式.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)函数的单调递增区间为和,单调递减区间为;(2).
【解析】
(1)由题可得,结合的范围判断的正负,即可求解;
(2)结合导数及函数的零点的判定定理,分类讨论进行求解
【详解】
(1),
①当时,,
∴函数在内单调递增;
②当时,令,解得或,
当或时,,则单调递增,
当时,,则单调递减,
∴函数的单调递增区间为和,单调递减区间为
(2)(Ⅰ)当时,所以在上无零点;
(Ⅱ)当时,,
①若,即,则是的一个零点;
②若,即,则不是的零点
(Ⅲ)当时,,所以此时只需考虑函数在上零点的情况,因为,所以
①当时,在上单调递增。又,所以
(ⅰ)当时,在上无零点;
(ⅱ)当时,,又,所以此时在上恰有一个零点;
②当时,令,得,由,得;由,得,所以在上单调递减,在上单调递增,
因为,,所以此时在上恰有一个零点,
综上,
【点睛】
本题考查利用导数求函数单调区间,考查利用导数处理零点个数问题,考查运算能力,考查分类讨论思想
18、(1)见解析,(1)存在,
【解析】
(1)求出圆和圆的圆心和半径,通过圆F1与圆F1有公共点求出的范围,从而根据可得点的轨迹,进而求出方程;
(1)过点且斜率为的直线方程为,设,,联立直线方程和椭圆方程,根据韦达定理以及,,可得,根据其为定值,则有,进而可得结果.
【详解】
(1)因为,,所以,
因为圆的半径为,圆的半径为,
又因为,所以,即,
所以圆与圆有公共点,
设公共点为,因此,所以点的轨迹是以,为焦点的椭圆,
所以,,,
即轨迹的方程为;
(1)过点且斜率为的直线方程为,设,
由消去得到,
则,, ①
因为,,
所以

将①式代入整理得
因为,
所以当时,即时,.
即存在实数使得.
【点睛】
本题考查椭圆定理求椭圆方程,考查椭圆中的定值问题,灵活应用韦达定理进行计算是关键,并且观察出取定值的条件也很重要,考查了学生分析能力和计算能力,是中档题.
19、(1)模型的拟合程度更好;(2)(i);(ii)亿元.
【解析】
(1)由相关系数求出两个系数,比较大小可得;
(2)(i)先建立关于的线性回归方程,从而得出关于的回归方程;
(ii)把代入(i)中的回归方程可得值.
【详解】
本小题主要考查回归分析等基础知识,考查数据处理能力、运算求解能力、抽象概括能力及应用意识,考查统计与概率思想、分类与整合思想,考查数学抽象、数学运算、数学建模、数据分析等核心素养,体现基础性、综合性与应用性.
解:(1),

则,因此从相关系数的角度,模型的拟合程度更好
(2)(i)先建立关于的线性回归方程.
由,得,即.
由于,
所以关于的线性回归方程为,
所以,则
(ii)下一年销售额需达到90亿元,即,
代入得,,
又,所以,
所以,
所以预测下一年的研发资金投入量约是亿元
【点睛】
本小题主要考查抛物线的定义、抛物线的标准方程、直线与抛物线的位置关系、导数几何意义等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想等,考查数学运算、直观想象、逻辑推理等核心素养,体现基础性、综合性与应用性
20、(1)79颗;(2)5.5秒.
【解析】
(1)利用各小矩形的面积和为1可得,进而得到脉冲星自转周期在2至10秒的频率,从而得到频数;
(2)平均值的估计值为各小矩形组中值与频率的乘积的和得到.
【详解】
(1)第一到第六组的频率依次为
0.1,0.2,0.3,0.2,,0.05,其和为1
所以,,
所以,自转周期在2至10秒的大约有(颗).
(2)新发现的脉冲星自转周期平均值为
(秒).
故新发现的脉冲星自转周期平均值为5.5秒.
【点睛】
本题考查频率分布直方图的应用,涉及到平均数的估计值等知识,是一道容易题.
21、(1)(2)证明见解析
【解析】
(1)利用求得数列的通项公式.
(2)先将缩小即,由此结合裂项求和法、放缩法,证得不等式成立.
【详解】
(1)∵,令,得.
又,两式相减,得.
∴.
(2)∵
.
又∵,,∴.

.
∴.
【点睛】
本小题主要考查已知求,考查利用放缩法证明不等式,考查化归与转化的数学思想方法,属于中档题.
22、(Ⅰ)(Ⅱ)8
【解析】
(Ⅰ)由余弦定理可得,即可求出A,
(Ⅱ)根据同角的三角函数的关系和两角和的正弦公式和正弦定理即可求出.
【详解】
(Ⅰ)由余弦定理,
所以,
所以,
即,
因为,
所以;
(Ⅱ)因为,所以,
因为,

由正弦定理得,所以.
【点睛】
本题考查利用正弦定理与余弦定理解三角形,属于简单题.

转载请注明出处卷子答案网-一个不只有答案的网站 » 江苏省常州市武进区2023届高三最后一卷数学试卷(含解析)

分享:

相关推荐