试卷答案
寻你做寻,想你所想

江苏省赣榆县赣榆智贤中学2023年高三第五次模拟考试数学试卷(含解析)

2023年高考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.阅读如图的程序框图,若输出的值为25,那么在程序框图中的判断框内可填写的条件是( )
A. B. C. D.
2.已知随机变量X的分布列如下表:
X 0 1
P a b c
其中a,b,.若X的方差对所有都成立,则( )
A. B. C. D.
3.已知等差数列中,则( )
A.10 B.16 C.20 D.24
4.2019年10月1日,为了庆祝中华人民共和国成立70周年,小明、小红、小金三人以国庆为主题各自独立完成一幅十字绣赠送给当地的村委会,这三幅十字绣分别命名为“鸿福齐天”、“国富民强”、“兴国之路”,为了弄清“国富民强”这一作品是谁制作的,村支书对三人进行了问话,得到回复如下:
小明说:“鸿福齐天”是我制作的;
小红说:“国富民强”不是小明制作的,就是我制作的;
小金说:“兴国之路”不是我制作的,
若三人的说法有且仅有一人是正确的,则“鸿福齐天”的制作者是( )
A.小明 B.小红 C.小金 D.小金或小明
5.已知是双曲线的左、右焦点,是的左、右顶点,点在过且斜率为的直线上,为等腰三角形,,则的渐近线方程为( )
A. B. C. D.
6.已知椭圆+=1(a>b>0)与直线交于A,B两点,焦点F(0,-c),其中c为半焦距,若△ABF是直角三角形,则该椭圆的离心率为( )
A. B. C. D.
7.已知函数,若关于的方程有4个不同的实数根,则实数的取值范围为( )
A. B. C. D.
8.1777年,法国科学家蒲丰在宴请客人时,在地上铺了一张白纸,上面画着一条条等距离的平行线,而他给每个客人发许多等质量的,长度等于相邻两平行线距离的一半的针,让他们随意投放.事后,蒲丰对针落地的位置进行统计,发现共投针2212枚,与直线相交的有704枚.根据这次统计数据,若客人随意向这张白纸上投放一根这样的针,则针落地后与直线相交的概率约为( )
A. B. C. D.
9.已知抛物线:,直线与分别相交于点,与的准线相交于点,若,则( )
A.3 B. C. D.
10.某高中高三(1)班为了冲刺高考,营造良好的学习氛围,向班内同学征集书法作品贴在班内墙壁上,小王,小董,小李各写了一幅书法作品,分别是:“入班即静”,“天道酬勤”,“细节决定成败”,为了弄清“天道酬勤”这一作品是谁写的,班主任对三人进行了问话,得到回复如下:
小王说:“入班即静”是我写的;
小董说:“天道酬勤”不是小王写的,就是我写的;
小李说:“细节决定成败”不是我写的.
若三人的说法有且仅有一人是正确的,则“入班即静”的书写者是( )
A.小王或小李 B.小王 C.小董 D.小李
11.函数的一个单调递增区间是( )
A. B. C. D.
12.如图,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E为AD的中点,若,则λ+μ的值为(    )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.双曲线的焦距为__________,渐近线方程为________.
14.已知、为正实数,直线截圆所得的弦长为,则的最小值为__________.
15.某校名学生参加军事冬令营活动,活动期间各自扮演一名角色进行分组游戏,角色按级别从小到大共种,分别为士兵、排长、连长、营长、团长、旅长、师长、军长和司令.游戏分组有两种方式,可以人一组或者人一组.如果人一组,则必须角色相同;如果人一组,则人角色相同或者人为级别连续的个不同角色.已知这名学生扮演的角色有名士兵和名司令,其余角色各人,现在新加入名学生,将这名学生分成组进行游戏,则新加入的学生可以扮演的角色的种数为________.
16.已知等差数列的前n项和为,,,则=_______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知为坐标原点,点,,,动点满足,点为线段的中点,抛物线:上点的纵坐标为,.
(1)求动点的轨迹曲线的标准方程及抛物线的标准方程;
(2)若抛物线的准线上一点满足,试判断是否为定值,若是,求这个定值;若不是,请说明理由.
18.(12分)为增强学生的法治观念,营造“学宪法、知宪法、守宪法”的良好校园氛围,某学校开展了“宪法小卫士”活动,并组织全校学生进行法律知识竞赛.现从全校学生中随机抽取50名学生,统计他们的竞赛成绩,已知这50名学生的竞赛成绩均在[50,100]内,并得到如下的频数分布表:
分数段 [50,60) [60,70) [70,80) [80,90) [90,100]
人数 5 15 15 12 3
(1)将竞赛成绩在内定义为“合格”,竞赛成绩在内定义为“不合格”.请将下面的列联表补充完整,并判断是否有的把握认为“法律知识竞赛成绩是否合格”与“是否是高一新生”有关?
合格 不合格 合计
高一新生 12
非高一新生 6
合计
(2)在(1)的前提下,按“竞赛成绩合格与否”进行分层抽样,从这50名学生中抽取5名学生,再从这5名学生中随机抽取2名学生,求这2名学生竞赛成绩都合格的概率.
参考公式及数据:,其中.
19.(12分)已知函数,为实数,且.
(Ⅰ)当时,求的单调区间和极值;
(Ⅱ)求函数在区间,上的值域(其中为自然对数的底数).
20.(12分)如图,已知三棱柱中,与是全等的等边三角形.
(1)求证:;
(2)若,求二面角的余弦值.
21.(12分)设函数.
(1)当时,解不等式;
(2)若的解集为,,求证:.
22.(10分)如图,在三棱柱中,已知四边形为矩形,,,,的角平分线交于.
(1)求证:平面平面;
(2)求二面角的余弦值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【解析】
根据循环结构的程序框图,带入依次计算可得输出为25时的值,进而得判断框内容.
【详解】
根据循环程序框图可知,
则,




此时输出,因而不符合条件框的内容,但符合条件框内容,结合选项可知C为正确选项,
故选:C.
【点睛】
本题考查了循环结构程序框图的简单应用,完善程序框图,属于基础题.
2、D
【解析】
根据X的分布列列式求出期望,方差,再利用将方差变形为,从而可以利用二次函数的性质求出其最大值为,进而得出结论.
【详解】
由X的分布列可得X的期望为,
又,
所以X的方差
,
因为,所以当且仅当时,取最大值,
又对所有成立,
所以,解得,
故选:D.
【点睛】
本题综合考查了随机变量的期望 方差的求法,结合了概率 二次函数等相关知识,需要学生具备一定的计算能力,属于中档题.
3、C
【解析】
根据等差数列性质得到,再计算得到答案.
【详解】
已知等差数列中,
故答案选C
【点睛】
本题考查了等差数列的性质,是数列的常考题型.
4、B
【解析】
将三个人制作的所有情况列举出来,再一一论证.
【详解】
依题意,三个人制作的所有情况如下所示:
1 2 3 4 5 6
鸿福齐天 小明 小明 小红 小红 小金 小金
国富民强 小红 小金 小金 小明 小红 小明
兴国之路 小金 小红 小明 小金 小明 小红
若小明的说法正确,则均不满足;若小红的说法正确,则4满足;若小金的说法正确,则3满足.故“鸿福齐天”的制作者是小红,
故选:B.
【点睛】
本题考查推理与证明,还考查推理论证能力以及分类讨论思想,属于基础题.
5、D
【解析】
根据为等腰三角形,可求出点P的坐标,又由的斜率为可得出关系,即可求出渐近线斜率得解.
【详解】
如图,
因为为等腰三角形,,
所以,,

又,

解得,
所以双曲线的渐近线方程为,
故选:D
【点睛】
本题主要考查了双曲线的简单几何性质,属于中档题.
6、A
【解析】
联立直线与椭圆方程求出交点A,B两点,利用平面向量垂直的坐标表示得到关于的关系式,解方程求解即可.
【详解】
联立方程,解方程可得或,
不妨设A(0,a),B(-b,0),由题意可知,·=0,
因为,,
由平面向量垂直的坐标表示可得,,
因为,所以a2-c2=ac,
两边同时除以可得,,
解得e=或(舍去),
所以该椭圆的离心率为.
故选:A
【点睛】
本题考查椭圆方程及其性质、离心率的求解、平面向量垂直的坐标表示;考查运算求解能力和知识迁移能力;利用平面向量垂直的坐标表示得到关于的关系式是求解本题的关键;属于中档题、常考题型.
7、C
【解析】
求导,先求出在单增,在单减,且知设,则方程有4个不同的实数根等价于方程
在上有两个不同的实数根,再利用一元二次方程根的分布条件列不等式组求解可得.
【详解】
依题意,,
令,解得,,故当时,,
当,,且,
故方程在上有两个不同的实数根,
故,
解得.
故选:C.
【点睛】
本题考查确定函数零点或方程根个数.其方法:
(1)构造法:构造函数(易求,可解),转化为确定的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出的图象草图,数形结合求解;
(2)定理法:先用零点存在性定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.
8、D
【解析】
根据统计数据,求出频率,用以估计概率.
【详解】
.
故选:D.
【点睛】
本题以数学文化为背景,考查利用频率估计概率,属于基础题.
9、C
【解析】
根据抛物线的定义以及三角形的中位线,斜率的定义表示即可求得答案.
【详解】
显然直线过抛物线的焦点
如图,过A,M作准线的垂直,垂足分别为C,D,过M作AC的垂线,垂足为E
根据抛物线的定义可知MD=MF,AC=AF,又AM=MN,所以M为AN的中点,所以MD为三角形NAC的中位线,故MD=CE=EA=AC
设MF=t,则MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=
所以
故选:C
【点睛】
本题考查求抛物线的焦点弦的斜率,常见于利用抛物线的定义构建关系,属于中档题.
10、D
【解析】
根据题意,分别假设一个正确,推理出与假设不矛盾,即可得出结论.
【详解】
解:由题意知,若只有小王的说法正确,则小王对应“入班即静”,
而否定小董说法后得出:小王对应“天道酬勤”,则矛盾;
若只有小董的说法正确,则小董对应“天道酬勤”,
否定小李的说法后得出:小李对应“细节决定成败”,
所以剩下小王对应“入班即静”,但与小王的错误的说法矛盾;
若小李的说法正确,则“细节决定成败”不是小李的,
则否定小董的说法得出:小王对应“天道酬勤”,
所以得出“细节决定成败”是小董的,剩下“入班即静”是小李的,符合题意.
所以“入班即静”的书写者是:小李.
故选:D.
【点睛】
本题考查推理证明的实际应用.
11、D
【解析】
利用同角三角函数的基本关系式、二倍角公式和辅助角公式化简表达式,再根据三角函数单调区间的求法,求得的单调区间,由此确定正确选项.
【详解】
因为
,由单调递增,则(),解得(),当时,D选项正确.C选项是递减区间,A,B选项中有部分增区间部分减区间.
故选:D
【点睛】
本小题考查三角函数的恒等变换,三角函数的图象与性质等基础知识;考查运算求解能力,推理论证能力,数形结合思想,应用意识.
12、B
【解析】
建立平面直角坐标系,用坐标表示,利用,列出方程组求解即可.
【详解】
建立如图所示的平面直角坐标系,则D(0,0).
不妨设AB=1,则CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),
∴(-2,2)=λ(-2,1)+μ(1,2),
解得则.
故选:B
【点睛】
本题主要考查了由平面向量线性运算的结果求参数,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、6
【解析】
由题得 所以焦距,故第一个空填6.
由题得渐近线方程为.故第二个空填.
14、
【解析】
先根据弦长,半径,弦心距之间的关系列式求得,代入整理得,利用基本不等式求得最值.
【详解】
解:圆的圆心为,
则到直线的距离为,
由直线截圆所得的弦长为可得
,整理得,
解得或(舍去),令

又,当且仅当时,等号成立,

.
故答案为:.
【点睛】
本题考查直线和圆的位置关系,考核基本不等式求最值,关键是对目标式进行变形,变成能用基本不等式求最值的形式,也可用换元法进行变形,是中档题.
15、
【解析】
对新加入的学生所扮演的角色进行分类讨论,分析各种情况下个学生所扮演的角色的分组,综合可得出结论.
【详解】
依题意,名学生分成组,则一定是个人组和个人组.
①若新加入的学生是士兵,则可以将这个人分组如下;名士兵;士兵、排长、连长各名;营长、团长、旅长各名;师长、军长、司令各名;名司令.所以新加入的学生可以是士兵,由对称性可知也可以是司令;
②若新加入的学生是排长,则可以将这个人分组如下:名士兵;连长、营长、团长各名;旅长、师长、军长各名;名司令;名排长.所以新加入的学生可以是排长,由对称性可知也可以是军长;
③若新加入的学生是连长,则可以将这个人分组如下:名士兵;士兵、排长、连长各名;连长、营长、团长各名;旅长、师长、军长各名;名司令.所以新加入的学生可以是连长,由对称性可知也可以是师长;
④若新加入的学生是营长,则可以将这个人分组如下:名士兵;排长、连长、营长各名;营长、团长、旅长各名;师长、军长、司令各名;名司令.所以新加入的学生可以是营长,由对称性可知也可以是旅长;
⑤若新加入的学生是团长,则可以将这个人分组如下:名士兵;排长、连长、营长各名;旅长、师长、军长各名;名司令;名团长.所以新加入的学生可以是团长.
综上所述,新加入学生可以扮演种角色.
故答案为:.
【点睛】
本题考查分类计数原理的应用,解答的关键就是对新加入的学生所扮演的角色进行分类讨论,属于中等题.
16、
【解析】
利用求出公差,结合等差数列的通项公式可求.
【详解】
设公差为,因为,所以,即.
所以.
故答案为:
【点睛】
本题主要考查等差数列通项公式的求解,利用等差数列的基本量是求解这类问题的通性通法,侧重考查数学运算的核心素养.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)曲线的标准方程为.抛物线的标准方程为.(2)见解析
【解析】
(1)由题知|PF1|+|PF2|2|F1F2|,判断动点P的轨迹W是椭圆,写出椭圆的标准方程,根据平面向量数量积运算和点A在抛物线上求出抛物线C的标准方程;(2)设出点P的坐标,再表示出点N和Q的坐标,根据题意求出的值,即可判断结果是否成立.
【详解】
(1)由题知,,
所以 ,
因此动点的轨迹是以,为焦点的椭圆,
又知,,
所以曲线的标准方程为.
又由题知,
所以 ,
所以,
又因为点在抛物线上,所以,
所以抛物线的标准方程为.
(2)设,,
由题知,所以,即,
所以 ,
又因为,,
所以,
所以为定值,且定值为1.
【点睛】
本题考查了圆锥曲线的定义与性质的应用问题,考查抛物线的几何性质及点在曲线上的代换,也考查了推理与运算能力,是中档题.
18、(1)见解析;(2)
【解析】
(1)补充完整的列联表如下:
合格 不合格 合计
高一新生 12 14 26
非高一新生 18 6 24
合计 30 20 50
则的观测值,
所以有的把握认为“法律知识竞赛成绩是否合格”与“是否是高一新生”有关.
(2)抽取的5名学生中竞赛成绩合格的有名学生,记为,
竞赛成绩不合格的有名学生,记为,
从这5名学生中随机抽取2名学生的基本事件有:,共10种,
这2名学生竞赛成绩都合格的基本事件有:,共3种,
所以这2名学生竞赛成绩都合格的概率为.
19、(Ⅰ)极大值0,没有极小值;函数的递增区间,递减区间,(Ⅱ)见解析
【解析】
(Ⅰ)由,令,得增区间为,令,得减区间为,所以有极大值,无极小值;
(Ⅱ)由,分,和三种情况,考虑函数在区间上的值域,即可得到本题答案.
【详解】
当时,,,
当时,,函数单调递增,当时,,函数单调递减,
故当时,函数取得极大值,没有极小值;
函数的增区间为,减区间为,

当时,,在上单调递增,即函数的值域为;
当时,,在上单调递减, 即函数的值域为;
当时,易得时,,在上单调递增,时,,在上单调递减,
故当时,函数取得最大值,最小值为,中最小的,
当时,,最小值;
当,,最小值;
综上,当时,函数的值域为,
当时,函数的值域,
当时,函数的值域为,
当时,函数的值域为.
【点睛】
本题主要考查利用导数求单调区间和极值,以及利用导数研究含参函数在给定区间的值域,考查学生的运算求解能力,体现了分类讨论的数学思想.
20、(1)证明见解析;(2).
【解析】
(1)取BC的中点O,则,由是等边三角形,得,从而得到平面,由此能证明
(2)以,,所在直线分别为x,y,z轴建立空间直角坐标系,利用向量法求得二面角的余弦值,得到结果.
【详解】
(1)取BC的中点O,连接,,
由于与是等边三角形,所以有,,
且,
所以平面,平面,所以.
(2)设,是全等的等边三角形,
所以,
又,由余弦定理可得,
在中,有,
所以以,,所在直线分别为x,y,z轴建立空间直角坐标系,如图所示,
则,,,
设平面的一个法向量为,则,
令,则,
又平面的一个法向量为,
所以二面角的余弦值为,
即二面角的余弦值为.
【点睛】
该题考查的是有关立体几何的问题,涉及到的知识点有利用线面垂直证明线性垂直,利用向量法求二面角的余弦值,属于中档题目.
21、(1);(2)见解析.
【解析】
(1)当时,将所求不等式变形为,然后分、、三段解不等式,综合可得出原不等式的解集;
(2)先由不等式的解集求得实数,可得出,将代数式变形为,将与相乘,展开后利用基本不等式可求得的最小值,进而可证得结论.
【详解】
(1)当时,不等式为,且.
当时,由得,解得,此时;
当时,由得,该不等式不成立,此时;
当时,由得,解得,此时.
综上所述,不等式的解集为;
(2)由,得,即或,
不等式的解集为,故,解得,,
, ,,
当且仅当,时取等号,.
【点睛】
本题考查含绝对值不等式的求解,同时也考查了利用基本不等式证明不等式,考查推理能力与计算能力,属于中等题.
22、(1)见解析;(2)
【解析】
(1)过点作交于,连接,设,连接,由角平分线的性质,正方形的性质,三角形的全等,证得,,由线面垂直的判断定理证得平面,再由面面垂直的判断得证.
(2)平面几何知识和线面的关系可证得平面,建立空间直角坐标系,求得两个平面的法向量,根据二面角的向量计算公式可求得其值.
【详解】
(1)如图,过点作交于,连接,设,连接,,,
又为的角平分线,四边形为正方形,,
又,,,,,又为的中点,
又平面,,平面,
又平面,平面平面,
(2)在中,,,,在中,,,
又,,,,
又,,平面,平面,
故建立如图空间直角坐标系,则,,,
,,,,
设平面的一个法向量为,则,,
令,得,
设平面的一个法向量为,则,
,令,得
,由图示可知二面角是锐角,
故二面角的余弦值为.
【点睛】
本题考查空间的面面垂直关系的证明,二面角的计算,在证明垂直关系时,注意运用平面几何中的等腰三角形的“三线合一”,勾股定理、菱形的对角线互相垂直,属于基础题.

转载请注明出处卷子答案网-一个不只有答案的网站 » 江苏省赣榆县赣榆智贤中学2023年高三第五次模拟考试数学试卷(含解析)

分享:

相关推荐