试卷答案
寻你做寻,想你所想

专题7 立体几何的向量方法(原卷版+解析版)- 2023届高考数学二模试题分类汇编(新高考卷)


专题7 立体几何的向量方法
1.(2023·江苏南通·二模)如图,在圆台中,分别为上、下底面直径,且,, 为异于的一条母线.
(1)若为的中点,证明:平面;
(2)若,求二面角的正弦值.
【解析】(1)如图,连接.
因为在圆台中,上、下底面直径分别为,且,
所以为圆台母线且交于一点P,所以四点共面.
在圆台中,平面平面,
由平面平面,平面平面,得.
又,所以,
所以,即为中点.
在中,又M为的中点,所以.
因为平面,平面,
所以平面;
(2)以为坐标原点,分别为轴,过O且垂直于平面的直线为轴,
建立如图所示的空间直角坐标系.
因为,所以.
则.
因为,所以.
所以,所以.
设平面的法向量为,
所以,所以,
令,则,所以,又,
设平面的法向量为,
所以,所以,
令,则,所以,
所以.
设二面角的大小为,则,
所以.
所以二面角的正弦值为.
.
2.(2023·湖北武汉·统考模拟预测)如图,在正四棱台中,,正四棱台的体积为28.
(1)求正四棱台的高;
(2)求直线与平面所成角的正弦值.
【解析】(1)由题可知,,
所以,,
设正四棱台的高为,


所以,
即正四棱台的高为3.
(2)设正四棱台的上、下底面的中心分别为,O,取BC,AB的中点分别为F,G,连接OF,OG,,易知OG,OF,两两垂直,
所以以为坐标原点,分别以OG,OF,所在直线为x,y,z轴建立如图所示的空间直角坐标系,
则,,,,,,
所以,,.
设平面的法向量为,
则,取,则,,所以,
设直线与平面所成的角为,
则,
即直线与平面所成角的正弦值为.
3.(2023·辽宁·鞍山一中校联考模拟预测)刍甍(chú méng)是中国古代数学书中提到的一种几何体,《九章算术》中对其有记载:“下有袤有广,而上有袤无广”,可翻译为:“底面有长有宽为矩形,顶部只有长没有宽为一条棱.”,如图,在刍甍中,四边形ABCD是正方形,平面和平面交于.
(1)求证:;
(2)若平面平面ABCD,,,,,求平面和平面所成角余弦值的绝对值.
【解析】(1)在正方形中,,平面,平面,
所以平面,
又平面,平面与平面交于,
所以;
(2)过点作于,过点作于,连接,
由平面平面,平面平面,平面,
所以平面,
又平面,所以,
以为坐标原点,分别以,,所在直线为,,轴建立如图所示的空间直角坐标系,
由(1)知,∴,
在四边形中,,,,所以,,
在正方形中,,所以,
因为,且,所以,
所以,,,,,
所以,,,,
设平面的一个法向量,
由,令,则,
设平面的一个法向量,
由,令,则,
设平面和平面所成角为,
则,
所以平面和平面所成角余弦值的绝对值为.
4.(2023·山东潍坊·统考模拟预测)如图,在三棱柱中,D为AC的中点,AB=BC=2,.
(1)证明:;
(2)若,且满足:三棱柱的体积为,二面角的大小为60°,求二面角的正弦值.
【解析】(1)在三棱柱中,由题意可得,,,
∴,
又∵AD=DC,∴,
同时在△ABC中,∵AB=BC,AD=DC,
∴,∵,,平面,
∴平面,
又∵平面,∴
(2)∵且,∴平面ABC,
∵平面ABC,∴,又∵,
∴为二面角的平面角,即
,,取BC的中点O,则,
∴,
又∵三棱柱的体积为,∴
如图所示,建立空间直角坐标系,
设平面的一个法向量为,且,,
则,令,则,,
故,
设平面的一个法向量为,
且,,则,
令,则b=0,,故,
,故二面角的正弦值为.
5.(2023·四川凉山·二模)如图,在直三棱柱中,点E,F分别是,中点,平面平面.
(1)证明:;
(2)若,平面平面,且,求直线l与平面所成角的余弦值.
【解析】(1)取中点G,连接,,
∵E,G分别是,中点,∴且,
又∵且,∴且,
∴四边形为平行四边形,∴,
又平面,平面,∴EF∥平面,
∵平面,平面平面,∴.
(2)由三棱柱为直棱柱,∴平面,∴,,
∵平面平面,平面平面,平面,
∴平面,∴,
故以为坐标原点,以,,分别为,,轴建立空间直角坐标系,
设,则,,,,
所以,,
又,则,解得,
所以,,则,,
设平面法向量为,
所以,即,取,得,
由(1)知直线,则l方向向量为,
设直线l与平面所成角为,
则,则,
所以直线l与平面所成角的余弦值为.
6.(2023·河南郑州·统考二模)如图,在四边形ABCP中,△ABC为边长为的正三角形,CP=CA,将△ACP沿AC翻折,使点P到达的位置,若平面平面ABC,且.
(1)求线段的长;
(2)设M在线段上,且满足,求二面角的余弦值.
【解析】(1)取BC中点O,连接,,因为△ABC为等边三角形,O为BC的中点,则,又,,平面,
∴平面,∴.
所以,即为等边三角形,所以,
又平面平面,,所以平面,所以,
又,所以.
(2)因为平面,,以点O为坐标原点,、、所在直线分别为x、y、z轴建立如下图所示的空间直角坐标系,
则、、,
,,设平面的法向量为,
则,取,则,
,设平面的法向量为,
则,取,则,
由已知可得.
综上,二面角的余弦值为.
7.(2023·湖北黄石·统考模拟预测)如图,四棱锥中,底面为矩形,.二面角的大小是,平面与平面的交线上存在一点满足二面角大小也是.
(1)求四面体的体积;
(2)若为直线上的动点,求直线与平面所成角的正弦值的最大值.
【解析】(1)如图,因为,平面,平面,所以平面,因为过的平面平面,所以,
平面,平面,所以平面,又因为,
所以点到平面的距离等于点到平面的距离,则,
所以.
(2)过作,,
,又面DEC,
面,又面,面面,
,面,
建立如图所示空间直角坐标系

设,则,
设面的一个法向量为,
则,,
令,解得,得,
又,,
令,则,
当,即时,
8.(2023·山东菏泽二模)如图,在三棱柱中,D,E,G分别为的中点,与平面交于点F,,,.
(1)求证:F为的中点;
(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线FG与平面BCD所成角的正弦值.
条件①:平面平面;
条件②:.
注:如果选择条件①和条件②分别解答,按第一个解答计分.
【解析】(1)由三棱柱的性质知,,平面,平面,
所以平面,又因为平面,
平面平面,
所以,因为E为的中点,所以F为的中点.
(2)选条件①,因为平面平面,平面平,
又因为,E为的中点,所以,
所以平面,又因为平面,所以,
又因为,,
平面,所以平面,
如图建立空间直角坐称系.
由题意得,
.
设平面的法向量,
,
,则,
平面BCD的法向量,
又,
设直线与平面所成的角为,
则,
所以直线FG与平面BCD所成角的正弦值为.
选条件②,因为,,,
则,所以,又因为,
,平面,所以平面,
因为,E为的中点,所以,
如图建立空间直角坐称系.
由题意得,
.
设平面的法向量,
,
,则,
平面BCD的法向量,
又,
设直线与平面所成的角为,
则,
所以直线FG与平面BCD所成角的正弦值为.
9.(2023·云南昆明·统考二模)如图,直四棱柱中,是等边三角形,
(1)从三个条件:①;②;③中任选一个作为已知条件,证明:;
(2)在(1)的前提下,若,是棱的中点,求平面与平面所成角的余弦值.
【解析】(1)对①:设与的交点为,
∵是等边三角形,且,则为的中点,
可得,且,则,
故,即,
又∵平面,平面,
∴,且平面,
故平面,
注意到平面,故;
对②:∵,则,
又∵,即,
可得,即,
又∵平面,平面,
∴,且平面,
故平面,
注意到平面,故;
对③:∵,即,
在中,则,可得,
故,则,
故,即,
又∵平面,平面,
∴,且平面,
故平面,
注意到平面,故.
(2)如图,建立空间直角坐标系,设,
则,
可得,
设平面的法向量为,则,
令,则,即,
设平面的法向量为,则,
令,则,即,
则,
故平面与平面所成角的余弦值为.
10.(2023·北京丰台·统考二模)如图,在四棱锥中,底面是边长为2的菱形,AC交BD于点O,,.点E是棱PA的中点,连接OE,OP.
(1)求证:平面PCD;
(2)若平面PAC与平面PCD的夹角的余弦值为,再从条件①,条件②这两个条件中选择一个作为已知,求线段OP的长.
条件①:平面平面;
条件②:.
注:如果选择条件①和条件②分别解答,按第一个解答计分.
【解析】(1)因为底面是菱形,所以是中点,
因为E是棱PA的中点,所以,
又因为平面PCD, 平面PCD,
所以平面PCD.
(2)选择条件①:
因为,是的中点,所以,
因为平面平面,平面平面,
平面,
所以平面,因为平面,所以,
又,所以两两垂直,
以为原点建立空间直角坐标系,
因为菱形的边长为2,
所以,
所以设
所以,
设为平面的一个法向量,
由得所以
取,所以,
因为平面,所以平面的一个法向量为,
平面PAC与平面PCD的夹角的余弦值为,
所以,所以
所以,所以,因为,所以,所以.
所以线段OP的长为.
选择条件②:
因为.在菱形中,,
因为平面平面,
所以平面,
因为平面,所以,因为,
所以两两垂直,
以为原点建立空间直角坐标系,
因为菱形的边长为2,
所以,
所以设
所以,
设为平面的一个法向量,
由得所以
取,所以,
因为平面,所以平面的一个法向量为,
平面PAC与平面PCD的夹角的余弦值为,
所以,所以
所以,所以,因为,所以,所以.
所以线段OP的长为.
11.(2023·辽宁抚顺·统考模拟预测)如图,四棱锥的底面是正方形,点P,Q在侧棱上,E是侧棱的中点.
(1)若,证明:BE∥平面;
(2)若每条侧棱的长都是底面边长的倍,从下面两个条件中选一个,求二面角的大小.
①平面;②P为的中点.
注:如果选择多个条件分别解答,按第一个解答计分.
【解析】(1)连接,设交点为O,连接,,,
在中,点E是的中点,点Q足线段的中点,所以.
又因为平面,且平面,所以平面,
在中,点O是线段的中点,点P是线段的中点,所以.
又因为平面,且平面,所以平面,
又因为,且,平面,所以平面平面,
又因为平面,所以平面;
(2)若选①平面,连接,
因为为正方形,所以点O分别为与的中点,
由题意,,所以,同理,
又,所以平面.
故以O为原点,,,所在直线分别为x,y,z轴建立空间直角坐标系.
设,则,,,,
所以,,,,,.
因为平面,所以平面的一个法向量为.
显然平面的一个法向量为.
设二面角的平面角为,所以,所以.
若选②P为的中点,连接,因为为正方形,所以点O分别为与的中点,
由题意,,所以.同理,
又,所以平面.
故以O为原点,,,所在直线分别为x,y,z轴建立空间直角坐标系.
设,则,,,,
所以,,,,,,
则,,
设平面的法向量为,
则,即,取,得,
显然平面的一个法向量为,
设二面角的平而角为,所以,所以.
12.(2023·湖南岳阳·统考二模)在中,,过点作,交线段于点(如图1),沿将折起,使(如图2),点分别为棱的中点.
(1)求证:;
(2)在①图1中,②图1中,③图2中三棱锥的体积最大.
这三个条件中任选一个,补充在下面问题中,再解答问题.
问题:已知__________,试在棱上确定一点,使得,并求平面与平面的夹角的余弦值.
注:如果选择多个条件分别解答,按第一个解答计分.
【解析】(1),平面,
平面平面.
又分别为的中点,
.
(2)选①,在图1所示的中,由,
解得或(舍去).
设,在Rt中,,
解得.
以点为原点,分别为轴建立如图所示的坐标系,

则.
设,则.
,即,解得,
当(即是的靠近的一个四等分点)时,.
设平面的一个法向量为,且,
由得令,则,
取平面CBN的一个法向量,
则,
平面BMN与平面的夹角的余弦值为.
选②,在图1所示的中,设,
则,
又,由平面向量基本定理知,即.
以点为原点,分别为轴建立如图所示的空间直角坐标系,

则.
设,则,
即,解得,
当(即是的靠近的一个四等分点)时,.
设平面的一个法向量为,且,
由得令,则.
取平面的一个法向量,
则,
平面与平面的夹角的余弦值为.
选③,在图1所示的中,设,则,
为等腰直角三角形,.
折起后,且,平面,
平面,又,

令,
当时,;当时,,
时,三棱锥的体积最大.
以点为原点,分别为轴建立如图所示直角坐标系,

,则,
设,则.
,即,
解得,
当(即是的靠近的一个四等分点)时,.
设平面的一个法向量为,且,
由得令,则.
取平面的一个法向量,
则,
平面与平面的夹角的余弦值为.
13.(2023·天津·校联考二模)已知底面是正方形,平面,,,点、分别为线段、的中点.
(1)求证:平面;
(2)求平面与平面夹角的余弦值;
(3)线段上是否存在点,使得直线与平面所成角的正弦值是,若存在求出的值,若不存在,说明理由.
【解析】(1)证明:法一:分别取、的中点、,连接、、,
由题意可知点、分别为线段、的中点.所以,,
因为,所以,所以点、、、四点共面,
因为、分别为、的中点,所以,
因为平面,平面,所以平面,
又因为,平面,平面,所以平面,
又因为,、平面,所以平面平面,
因为平面,所以平面;
法二:因为为正方形,且平面,所以、、两两互相垂直,
以点为坐标原点,以、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,
则、、、、、,
所以,易知平面的一个法向量,
所以,所以,
又因为平面,所以平面.
(2)设平面的法向量,,,
则,取,可得,
所以平面的一个法向量为,
易知平面的一个法向量,设平面与平面夹角为,
则,
所以平面与平面夹角余弦值为;
(3)假设存在点,使得,其中,
则,
由(2)得平面的一个法向量为,
由题意可得,
整理可得.即,
因为,解得或,所以,或.
14.(2023·青海·校联考模拟预测)如图,在四棱锥中,,,四边形ABCD是菱形,,E是棱PD上的动点,且.
(1)证明:平面ABCD.
(2)是否存在实数,使得平面PAB与平面ACE所成锐二面角的余弦值是?若存在,求出的值;若不存在,请说明理由.
【解析】(1)证明:因为四边形ABCD是菱形,所以.
因为,AC,平面PAC,且,
所以平面PAC.因为平面PAC,所以.
因为,所以,所以.
因为AB,平面ABCD,且,所以平面ABCD.
(2)取棱CD的中点F,连接AF,易证AB,AF,AP两两垂直,故以A为原点,分别以,,的方向为x,y,z轴的正方向,建立空间直角坐标系.
设,则,,,,
故,,.
因为,所以,则.
设平面ACE的法向量为,则,
令,得.
平面PAB的一个法向量为.
设平面PAB与平面ACE所成的锐二面角为,则,
整理得,解得或(舍去).
故存在实数,使得平面PAB与平面ACE所成锐二面角的余弦值是.
15.(2023·天津河东·二模)在苏州博物馆有一类典型建筑八角亭,既美观又利于采光,其中一角如图所示,为多面体,,,,底面,四边形是边长为2的正方形且平行于底面,,,的中点分别为,,,.
(1)证明:平面;
(2)求平面与平面夹角的余弦值;
(3)一束光从玻璃窗面上点射入恰经过点(假设此时光经过玻璃为直射),求这束光在玻璃窗上的入射角的正切值.
【解析】(1)过点作的平行线,由题意可知以为原点,建立如图所示空间直角坐标系,
则,,,,,,,,,,.
设平面的法向量为,,,,,令,则,
∵,
∴,平面.
(2)根据图形易知平面的法向量为,设平面与平面的夹角为,
则.
所以平面与平面夹角的余弦值.
(3),入射角为,
,因为,
所以,.
故这束光在玻璃窗上的入射角的正切值为.
精品试卷·第 2 页 (共 2 页)
HYPERLINK "()
" ()
专题7 立体几何的向量方法
1.(2023·江苏南通·二模)如图,在圆台中,分别为上、下底面直径,且,, 为异于的一条母线.
(1)若为的中点,证明:平面;
(2)若,求二面角的正弦值.
2.(2023·湖北武汉·统考模拟预测)如图,在正四棱台中,,正四棱台的体积为28.
(1)求正四棱台的高;
(2)求直线与平面所成角的正弦值.
3.(2023·辽宁·鞍山一中校联考模拟预测)刍甍(chú méng)是中国古代数学书中提到的一种几何体,《九章算术》中对其有记载:“下有袤有广,而上有袤无广”,可翻译为:“底面有长有宽为矩形,顶部只有长没有宽为一条棱.”,如图,在刍甍中,四边形ABCD是正方形,平面和平面交于.
(1)求证:;
(2)若平面平面ABCD,,,,,求平面和平面所成角余弦值的绝对值.
4.(2023·山东潍坊·统考模拟预测)如图,在三棱柱中,D为AC的中点,AB=BC=2,.
(1)证明:;
(2)若,且满足:三棱柱的体积为,二面角的大小为60°,求二面角的正弦值.
5.(2023·四川凉山·二模)如图,在直三棱柱中,点E,F分别是,中点,平面平面.
(1)证明:;
(2)若,平面平面,且,求直线l与平面所成角的余弦值.
6.(2023·河南郑州·统考二模)如图,在四边形ABCP中,△ABC为边长为的正三角形,CP=CA,将△ACP沿AC翻折,使点P到达的位置,若平面平面ABC,且.
(1)求线段的长;
(2)设M在线段上,且满足,求二面角的余弦值.
7.(2023·湖北黄石·统考模拟预测)如图,四棱锥中,底面为矩形,.二面角的大小是,平面与平面的交线上存在一点满足二面角大小也是.
(1)求四面体的体积;
(2)若为直线上的动点,求直线与平面所成角的正弦值的最大值.
8.(2023·山东菏泽二模)如图,在三棱柱中,D,E,G分别为的中点,与平面交于点F,,,.
(1)求证:F为的中点;
(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线FG与平面BCD所成角的正弦值.
条件①:平面平面;
条件②:.
注:如果选择条件①和条件②分别解答,按第一个解答计分.
9.(2023·云南昆明·统考二模)如图,直四棱柱中,是等边三角形,
(1)从三个条件:①;②;③中任选一个作为已知条件,证明:;
(2)在(1)的前提下,若,是棱的中点,求平面与平面所成角的余弦值.
10.(2023·北京丰台·统考二模)如图,在四棱锥中,底面是边长为2的菱形,AC交BD于点O,,.点E是棱PA的中点,连接OE,OP.
(1)求证:平面PCD;
(2)若平面PAC与平面PCD的夹角的余弦值为,再从条件①,条件②这两个条件中选择一个作为已知,求线段OP的长.
条件①:平面平面;
条件②:.
注:如果选择条件①和条件②分别解答,按第一个解答计分.
11.(2023·辽宁抚顺·统考模拟预测)如图,四棱锥的底面是正方形,点P,Q在侧棱上,E是侧棱的中点.
(1)若,证明:BE∥平面;
(2)若每条侧棱的长都是底面边长的倍,从下面两个条件中选一个,求二面角的大小.
①平面;②P为的中点.
注:如果选择多个条件分别解答,按第一个解答计分.
12.(2023·湖南岳阳·统考二模)在中,,过点作,交线段于点(如图1),沿将折起,使(如图2),点分别为棱的中点.
(1)求证:;
(2)在①图1中,②图1中,③图2中三棱锥的体积最大.
这三个条件中任选一个,补充在下面问题中,再解答问题.
问题:已知__________,试在棱上确定一点,使得,并求平面与平面的夹角的余弦值.
注:如果选择多个条件分别解答,按第一个解答计分.
13.(2023·天津·校联考二模)已知底面是正方形,平面,,,点、分别为线段、的中点.
(1)求证:平面;
(2)求平面与平面夹角的余弦值;
(3)线段上是否存在点,使得直线与平面所成角的正弦值是,若存在求出的值,若不存在,说明理由.
14.(2023·青海·校联考模拟预测)如图,在四棱锥中,,,四边形ABCD是菱形,,E是棱PD上的动点,且.
(1)证明:平面ABCD.
(2)是否存在实数,使得平面PAB与平面ACE所成锐二面角的余弦值是?若存在,求出的值;若不存在,请说明理由.
15.(2023·天津河东·二模)在苏州博物馆有一类典型建筑八角亭,既美观又利于采光,其中一角如图所示,为多面体,,,,底面,四边形是边长为2的正方形且平行于底面,,,的中点分别为,,,.
(1)证明:平面;
(2)求平面与平面夹角的余弦值;
(3)一束光从玻璃窗面上点射入恰经过点(假设此时光经过玻璃为直射),求这束光在玻璃窗上的入射角的正切值.
精品试卷·第 2 页 (共 2 页)
HYPERLINK "()
" ()

转载请注明出处卷子答案网-一个不只有答案的网站 » 专题7 立体几何的向量方法(原卷版+解析版)- 2023届高考数学二模试题分类汇编(新高考卷)

分享:

相关推荐